Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Combination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy

Abstract

The tumour microenvironment thwarts conventional immunotherapy through multiple immunologic mechanisms, such as the secretion of the transforming growth factor-β (TGF-β), which stunts local tumour immune responses. Therefore, high doses of interleukin-2 (IL-2), a conventional cytokine for metastatic melanoma, induces only limited responses. To overcome the immunoinhibitory nature of the tumour microenvironment, we developed nanoscale liposomal polymeric gels (nanolipogels; nLGs) of drug-complexed cyclodextrins and cytokine-encapsulating biodegradable polymers that can deliver small hydrophobic molecular inhibitors and water-soluble protein cytokines in a sustained fashion to the tumour microenvironment. nLGs releasing TGF-β inhibitor and IL-2 significantly delayed tumour growth, increased survival of tumour-bearing mice, and increased the activity of natural killer cells and of intratumoral-activated CD8+ T-cell infiltration. We demonstrate that the efficacy of nLGs in tumour immunotherapy results from a crucial mechanism involving activation of both innate and adaptive immune responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fabrication of the nLG particle system.
Figure 2: Controlled release clearance and biodistribution in healthy animals.
Figure 3: Clinical effects of nLG therapy on subcutaneous and metastatic melanoma.
Figure 4: Biodistribution to subcutaneous tumours after systemic administration.
Figure 5: The adaptive immune response and mechanism of nLG–SB + IL-2 action.
Figure 6: Role of NK cells in tumour immunotherapy after combination delivery.

Similar content being viewed by others

References

  1. Tawbi, H. A. & Kirkwood, J. M. Management of metastatic melanoma. Semin. Oncol. 34, 532–545 (2007).

    Article  CAS  Google Scholar 

  2. Atkins, M. B. et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: Analysis of 270 patients treated between 1985 and 1993. J. Clin. Oncol. 17, 2105–2116 (1999).

    Article  CAS  Google Scholar 

  3. Acquavella, N. et al. Toxicity and activity of a twice daily high-dose bolus interleukin 2 regimen in patients with metastatic melanoma and metastatic renal cell cancer. J. Immunother. 31, 569–576 (2008).

    Article  CAS  Google Scholar 

  4. Flavell, R. A., Sanjabi, S., Wrzesinski, S. H. & Licona-Limon, P. The polarization of immune cells in the tumour environment by TGFβ. Nature Rev. Immunol. 10, 554–567 (2010).

    Article  CAS  Google Scholar 

  5. Gorelik, L. & Flavell, R. A. Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells. Nature Med. 7, 1118–1122 (2001).

    Article  CAS  Google Scholar 

  6. Smyth, M. J. et al. CD4+CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer. J. Immunol. 176, 1582–1587 (2006).

    Article  CAS  Google Scholar 

  7. Wrzesinski, S. H., Wan, Y. Y. & Flavell, R. A. Transforming growth factor-β and the immune response: Implications for anticancer therapy. Clin. Cancer Res. 13, 5262–5270 (2007).

    Article  CAS  Google Scholar 

  8. Liu, V. C. et al. Tumor evasion of the immune system by converting CD4+CD25 T cells into CD4+CD25+ T regulatory cells: Role of tumor-derived TGF-β. J. Immunol. 178, 2883–2892 (2007).

    Article  CAS  Google Scholar 

  9. Fan, T. M., Kranz, D. M. & Roy, E. J. Enhancing antitumor immunity: combining IL-12 with TGF β1 antagonism. J. Immunother. 30, 479–489 (2007).

    Article  CAS  Google Scholar 

  10. Yingling, J. M., Blanchard, K. L. & Sawyer, J. S. Development of TGF-β signaling inhibitors for cancer therapy. Nature Rev. Drug. Disc. 3, 1011–1022 (2004).

    Article  CAS  Google Scholar 

  11. Neville, M. E., Boni, L., Pflug, L., Popescu, M. C. & Robb, R. J. Biopharmaceutics of liposomal IL-2. Oncol. Cytok. 12, 1691–1701 (2000).

    CAS  Google Scholar 

  12. Feng, X-H. & Derynck, R. Specificity and versatility in TGF-β signaling through Smads. Annu. Rev. Cell Dev. Biol. 21, 659–693 (2005).

    Article  CAS  Google Scholar 

  13. Kano, M. R. et al. Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-β signaling. Proc. Natl Acad. Sci. USA 104, 3460–3465 (2007).

    Article  CAS  Google Scholar 

  14. Laouar, Y., Sutterwala, F. S., Gorelik, L. & Flavell, R. A. Transforming growth factor-beta control T helper type 1 cell development through regulation of natural killer interferon-gamma. Nature Immunol. 6, 600–607 (2005).

    Article  CAS  Google Scholar 

  15. Terabe, M. & Berzofsky, J. A. The role of NKT cells in tumor immunity. Adv. Cancer Res. 101, 277–348 (2008).

    Article  CAS  Google Scholar 

  16. Gillies, S. D. et al. A low-toxicity IL-2-based immunocytokine retains antitumor activity despite its high degree of IL-2 receptor selectivity. Clin. Cancer Res. 17, 3673–3685 (2011).

    Article  CAS  Google Scholar 

  17. Teppler, H. et al. Prolonged immunostimulatory effect of low-dose polyethylene glycol interleukin 2 in patients with human immunodeficiency virus type 1 infection. J. Exp. Med. 177, 483–492 (1993).

    Article  CAS  Google Scholar 

  18. Letourneau, S. et al. IL-2/anti-IL-2 antibody complexes show strong biological activity by avoiding interaction with IL-2 receptor alpha subunit CD25. Proc. Natl Acad. Sci. USA 107, 2171–2176 (2010).

    Article  CAS  Google Scholar 

  19. Kaufman, H. L., Flanagan, K., Lee, C. S., Perretta, D. J. & Horig, H. Insertion of interleukin-2 (IL-2) and interleukin-12 (IL-12) genes into vaccinia virus results in effective anti-tumor responses without toxicity. Vaccine 20, 1862–1869 (2002).

    Article  CAS  Google Scholar 

  20. Kanaoka, E. et al. A significant enhancement of therapeutic effect against hepatic metastases of M5076 in mice by a liposomal interleukin-2 (mixture). J. Control. Rel. 82, 183–187 (2002).

    Article  CAS  Google Scholar 

  21. Neville, M. E., Robb, R. J. & Popescu, M. C. In situ vaccination against a non-immunogenic tumour using intratumoural injections of liposomal interleukin 2. Cytokine 16, 239–250 (2001).

    Article  CAS  Google Scholar 

  22. Town, T. et al. Blocking TGF-β–Smad2/3 innate immune signaling mitigates Alzheimer-like pathology. Nature Med. 14, 681–687 (2008).

    Article  CAS  Google Scholar 

  23. Byfield, S. D., Major, C., Laping, N. J. & Roberts, A. B. SB-505124 is a selective inhibitor of transforming growth factor-β type I receptors ALK4, ALK5, and ALK7. Mol. Pharm. 65, 744–752 (2004).

    Article  CAS  Google Scholar 

  24. Allen, T. M. & Martin, F. J. Advantages of liposomal delivery systems for anthracyclines. Semin. Oncol. 31, 5–15 (2004).

    Article  CAS  Google Scholar 

  25. Torchilin, V. P. Recent advances with liposomes as pharmaceutical carriers. Nature Rev. Drug. Disc. 4, 145–160 (2005).

    Article  CAS  Google Scholar 

  26. Mundargi, R. C., Babu, V. R., Rangaswamy, V., Patel, P. & Aminabhavi, T. M. Nano/micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives. J. Control Release 125, 193–209 (2008).

    Article  CAS  Google Scholar 

  27. Thevenot, J., Troutier, A-L., David, L., Delair, T. & Ladavire, C. Steric stabilization of lipid/polymer particle assemblies by poly(ethylene glycol)-lipids. Biomacromole 8, 3651–3660 (2007).

    Article  CAS  Google Scholar 

  28. Moghimi, S. M. & Szebeni, J. Stealth liposomes and long circulating nanoparticles: Critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog. Lipid Res. 42, 463–478 (2003).

    Article  CAS  Google Scholar 

  29. Moghimi, S. M., Hunter, A. C. & Murray, J. C. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol. Rev. 53, 283–318 (2001).

    CAS  Google Scholar 

  30. Kazakov, S. & Levon, K. Liposome-nanogel structures for future pharmaceutical applications. Curr. Pharm Des. 12, 4713–4728 (2006).

    Article  CAS  Google Scholar 

  31. Meng, H. et al. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano 4, 4539–4550 (2010).

    Article  CAS  Google Scholar 

  32. Meng, H. et al. Autonomous in vitro anticancer drug release from mesoporous silica nanoparticles by pH-sensitive nanovalves. J. Am. Chem. Soc. 132, 12690–12697 (2010).

    Article  CAS  Google Scholar 

  33. Liong, M. et al. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2, 889–896 (2008).

    Article  CAS  Google Scholar 

  34. Ashley, C. E. et al. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nature Mater. 10, 389–397 (2011).

    Article  CAS  Google Scholar 

  35. Sawhney, A. S., Pathak, C. P. & Hubbell, J. A. Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(α-hydroxy acid) diacrylate macromers. Macromole 26, 581–587 (1993).

    Article  CAS  Google Scholar 

  36. Van Thienen, T. G., Raemdonck, K., Demeester, J. & De Smedt, S. C. Protein release from biodegradable dextran nanogels. Langmuir 23, 9794–9801 (2007).

    Article  CAS  Google Scholar 

  37. Loftsson, T. & Duchene, D. Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 329, 1–11 (2007).

    Article  CAS  Google Scholar 

  38. Stella, J. & He, Q. Cyclodextrins. Toxicol. Pathol. 36, 30–42 (2008).

    Article  CAS  Google Scholar 

  39. Cote-Sierra, J. et al. Interleukin 2 plays a central role in Th2 differentiation. Proc. Natl Acad. Sci. USA 101, 3880–3885 (2004).

    Article  CAS  Google Scholar 

  40. Al-Soufi, W. et al. Fluorescence correlation spectroscopy, a tool to investigate supramolecular dynamics: inclusion complexes of pyronines with cyclodextrin. J. Am. Chem. Soc. 127, 8775–8784 (2005).

    Article  CAS  Google Scholar 

  41. Wu, S. et al. Photoreversible fluorescence modulation of a rhodamine dye by supramolecular complexation with photosensitive cyclodextrin. Angew. Chem. Int. Ed. 46, 7015–7018 (2007).

    Article  CAS  Google Scholar 

  42. Farokhzad, O. C. et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl Acad. Sci. USA 103, 6315–6320 (2006).

    Article  CAS  Google Scholar 

  43. Wischke, C. & Schwendeman, S. P. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int. J. Pharm. 364, 298–327 (2008).

    Article  CAS  Google Scholar 

  44. Van Elsas, A., Hurwitz, A. A. & Allison, J. P. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J. Exp. Med. 190, 355–366 (1999).

    Article  CAS  Google Scholar 

  45. Sanjabi, S., Mosaheb, M. M. & Flavell, R. A. Opposing effects of TGF-β and IL-15 cytokines control the number of short-lived effector CD8+ T cells. Immunity 31, 131–144 (2009).

    Article  CAS  Google Scholar 

  46. Hori, Y., Stern, P. J., Hynes, R. O. & Irvine, D. J. Engulfing tumors with synthetic extracellular matrices for cancer immunotherapy. Biomaterials 30, 6757–6767 (2009).

    Article  CAS  Google Scholar 

  47. Moon, J. J. et al. Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses. Nature Mater. 10, 243–251 (2011).

    Article  CAS  Google Scholar 

  48. Peer, D., Park, E. J., Morishita, Y., Carman, C. V. & Shimaoka, M. Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science 319, 627–630 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank R. Murelli and D. Spiegel for assistance with polymer synthesis; P. McEnaney, S. Royce-Hynes, J. Bertram and Q. Wang for helpful discussions and assistance with the procedures. The work was supported in part by NIH through grants R01-HL085416 and R01-EB008260 (T.M.F.); an NIH Autoimmunity Center of Excellence Pilot Award (U19AI082713; T.M.F); a Public Health Grant (HL-55397; T.M.F.); an NSF CAREER grant (T.M.F.); a Yale Skin SPORE Career Development Award (S.H.W.); the Howard Hughes Medical Institute (R.A.F.); the Yale Cancer Center (S.H.W.), and a post-doctoral fellowship from the Pew Charitable Trust: Pew Latin American Fellow Program in Biomedical Sciences (P.L.L.) and the Yale Rheumatologic Disease Research Core Center P30AR053495.

Author information

Authors and Affiliations

Authors

Contributions

J.P., E.S., S.H.W., R.A.F. and T.M.F. designed all of the experiments for this study. R.R helped synthesize the polymer with J.C., J.P. and E.S. T.M.F. conceived the formulation and E.S., J.P., S.M.J., A.A. and T.M.F. developed and characterized the particles. J.P., E.S., S.H.W., P.L.L. and S.L.D. performed in vivo experiments. J.P., S.H.W. and P.L.L. performed FACS analyses and in vitro characterization experiments. M.L. performed toxicology experiments, nLG characterization experiments and part of the statistical analysis. R.A.F. and T.M.F. initiated the research and supervised the program. A.H. and D.S. helped perform and analyse the intravital imaging microscopy work together with J.P. J.P., E.S., S.H.W. and T.M.F. wrote the manuscript. T.M.F. edited the manuscript.

Corresponding author

Correspondence to Tarek M. Fahmy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1725 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J., Wrzesinski, S., Stern, E. et al. Combination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nature Mater 11, 895–905 (2012). https://doi.org/10.1038/nmat3355

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3355

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research