Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A search model for topological insulators with high-throughput robustness descriptors

Abstract

Topological insulators (TI) are becoming one of the most studied classes of novel materials because of their great potential for applications ranging from spintronics to quantum computers. To fully integrate TI materials in electronic devices, high-quality epitaxial single-crystalline phases with sufficiently large bulk bandgaps are necessary. Current efforts have relied mostly on costly and time-consuming trial-and-error procedures. Here we show that by defining a reliable and accessible descriptor , which represents the topological robustness or feasibility of the candidate, and by searching the quantum materials repository aflowlib.org, we have automatically discovered 28 TIs (some of them already known) in five different symmetry families. These include peculiar ternary halides, Cs{Sn,Pb,Ge}{Cl,Br,I}3, which could have been hardly anticipated without high-throughput means. Our search model, by relying on the significance of repositories in materials development, opens new avenues for the discovery of more TIs in different and unexplored classes of systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Extraction of the high-throughput TI robustness descriptor from energy versus strain variations in SOC and noSOC calculations.
Figure 2: Two-dimensional surface electronic structure for selected compounds.

Similar content being viewed by others

References

  1. Hsieh, D. et al. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970–974 (2008).

    Article  CAS  Google Scholar 

  2. Kane, C. L. & Moore, J. E. Topological insulators. Phys. World 24, 32–36 (February, 2011).

    Article  CAS  Google Scholar 

  3. Moore, J. E. The birth of topological insulators. Nature 464, 194–198 (2010).

    Article  CAS  Google Scholar 

  4. Moore, J. E. Topological insulators: The next generation. Nature Phys. 5, 378–380 (2009).

    Article  CAS  Google Scholar 

  5. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  CAS  Google Scholar 

  6. Chen, Y. L. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3 . Science 325, 178–181 (2009).

    Article  CAS  Google Scholar 

  7. Zhang, T. et al. Experimental demonstration of topological surface states protected by time-reversal symmetry. Phys. Rev. Lett. 103, 266803 (2009).

    Article  Google Scholar 

  8. Xia, Y. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Phys. 5, 398–402 (2009).

    Article  CAS  Google Scholar 

  9. Kuroda, K. et al. Hexagonally deformed Fermi surface of the 3D topological insulator Bi2Se3 . Phys. Rev. Lett. 105, 076802 (2010).

    Article  CAS  Google Scholar 

  10. Chen, Y. L. et al. Single Dirac cone topological surface state and unusual thermoelectric property of compounds from a new topological insulator family. Phys. Rev. Lett. 105, 266401 (2010).

    Article  CAS  Google Scholar 

  11. Sato, T. et al. Direct evidence for the Dirac-cone topological surface states in the ternary chalcogenide TlBiSe2 . Phys. Rev. Lett. 105, 136802 (2010).

    Article  Google Scholar 

  12. Kuroda, K. et al. Experimental realization of a three-dimensional topological insulator phase in ternary chalcogenide TlBiSe2 . Phys. Rev. Lett. 105, 146801 (2010).

    Article  CAS  Google Scholar 

  13. Arakane, T. et al. Tunable Dirac cone in the topological insulator Bi2−xSbxTe3−ySey . Nature Commun. 3, 636 (2012).

    Article  CAS  Google Scholar 

  14. Xu, S-Y. et al. Discovery of several large families of topological insulator classes with backscattering-suppressed spin-polarized single-dirac-cone on the surface. Preprint at http://arxiv.org/abs/1007.5111v1 (2010).

  15. Souma, S. et al. Topological surface states in lead-based ternary telluride Pb(Bi1−xSbx)2Te4 . Phys. Rev. Lett. 108, 116801 (2012).

    Article  CAS  Google Scholar 

  16. Eremeev, S. V. et al. Atom-specific spin mapping and buried topological states in a homologous series of topological insulators. Nature Commun. 3, 635 (2012).

    Article  Google Scholar 

  17. Chadov, S. et al. Tunable multifunctional topological insulators in ternary Heusler compounds. Nature Mater. 9, 541–545 (2010).

    Article  CAS  Google Scholar 

  18. Lin, H. et al. Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena. Nature Mater. 9, 546–549 (2010).

    Article  CAS  Google Scholar 

  19. Xiao, D. et al. Half-Heusler compounds as a new class of three-dimensional topological insulators. Phys. Rev. Lett. 105, 096404 (2010).

    Article  Google Scholar 

  20. Sun, Y., Chen, X-Q., Yunoki, S., Li, D. & Li, Y. New family of three-dimensional topological insulators with antiperovskite structure. Phys. Rev. Lett. 105, 216406 (2010).

    Article  Google Scholar 

  21. Zhang, H-J. et al. Topological insulators in ternary compounds with a honeycomb lattice. Phys. Rev. Lett. 106, 156402 (2011).

    Article  Google Scholar 

  22. Feng, W., Xiao, D., Ding, J. & Yao, Y. Three-dimensional topological insulators in I–III–VI2 and II–IV–V2 chalcopyrite semiconductors. Phys. Rev. Lett. 106, 016402 (2011).

    Article  Google Scholar 

  23. Jin, H., Song, J-H., Freeman, A. J. & Kanatzidis, M. G. Candidates for topological insulators: Pb-based chalcogenide series. Phys. Rev. B 83, 041202 (2011).

    Article  Google Scholar 

  24. Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).

    Article  Google Scholar 

  25. Winkler, R. in Spin–orbit Coupling Effects in Two-Dimensional Electron and Hole Systems Vol. 191 (Springer Tracts in Modern Physics, Springer, 2003).

    Book  Google Scholar 

  26. Luo, J-W. & Zunger, A. Design principles and coupling mechanisms in the 2D quantum well topological insulator HgTe/CdTe. Phys. Rev. Lett. 105, 176805 (2010).

    Article  Google Scholar 

  27. Xu, S-Y. et al. Topological phase transition and texture inversion in a tunable topological insulator. Science 332, 560–564 (2011).

    Article  CAS  Google Scholar 

  28. Curtarolo, S. et al. AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations. Comput. Mater. Sci. 58, 227–235 (2012).

    Article  CAS  Google Scholar 

  29. Setyawan, W., Gaume, R. M., Lam, S., Feigelson, R. S. & Curtarolo, S. High-throughput combinatorial database of electronic band structures for inorganic scintillator materials. ACS Comb. Sci. 13, 382–390 (2011).

    Article  CAS  Google Scholar 

  30. Wang, S., Wang, Z., Setyawan, W., Mingo, N. & Curtarolo, S. Assessing the thermoelectric properties of sintered compounds via high-throughput ab-initio calculations. Phys. Rev. X 1, 021012 (2011).

    Google Scholar 

  31. Bergerhoff, G., Hundt, R., Sievers, R. & Brown, I. D. The inorganic crystal structure data base. J. Chem. Inf. Comput. Sci. 23, 66–69 (1983).

    Article  CAS  Google Scholar 

  32. Moon, C-Y. & Wei, S-H. Band gap of Hg chalcogenides: Symmetry-reduction-induced band-gap opening of materials with inverted band structures. Phys. Rev. B 74, 045205 (2006).

    Article  Google Scholar 

  33. Welber, B., Cardona, M., Kim, C. K. & Rodriguez, S. Dependence of the direct energy gap of GaAs on hydrostatic pressure. Phys. Rev. B 12, 5729–5738 (1975).

    Article  CAS  Google Scholar 

  34. Wang, S. Q. & Ye, H. Q. A plane-wave pseudopotential study on III–V zinc-blende and wurtzite semiconductors under pressure. J. Phys. Condens. Matter. 14, 9579–9587 (2002).

    Article  CAS  Google Scholar 

  35. Knittle, E. & Jeanloz, R. Structural and bonding changes in cesium iodide at high pressures. Science 223, 53–56 (1984).

    Article  CAS  Google Scholar 

  36. Nabi, Z., Abbar, B., Méçabih, S., Khalfi, A. & Amrane, N. Pressure dependence of band gaps in PbS, PbSe and PbTe. Comput. Mater. Sci. 18, 127–131 (2000).

    Article  CAS  Google Scholar 

  37. Pettifor, D. G. A chemical scale for crystal-structure maps. Solid State Commun. 51, 31–34 (1984).

    Article  CAS  Google Scholar 

  38. Pettifor, D. G. The structures of binary compounds. I. Phenomenological structure maps. J. Phys. C 19, 285–313 (1986).

    Article  CAS  Google Scholar 

  39. Setyawan, W. & Curtarolo, S. High-throughput electronic band structure calculations: Challenges and tools. Comput. Mater. Sci. 49, 299–312 (2010).

    Article  Google Scholar 

  40. Curtarolo, S. et al. AFLOW: An automatic framework for high-throughput materials discovery. Comput. Mater. Sci. 58, 218–226 (2012).

    Article  CAS  Google Scholar 

  41. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  42. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  43. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  44. Vidal, J., Zhang, X., Yu, L., Luo, J-W. & Zunger, A. False-positive and false-negative assignments of topological insulators in density functional theory and hybrids. Phys. Rev. B 84, 041109 (2011).

    Article  Google Scholar 

  45. Frumar, M., Tichý, L., Horák, J. & Klikorka, J. Preparation and some physical properties of semiconducting GeSb2Te4 crystals. Mater. Res. Bull. 7, 1075–1085 (1972).

    Article  CAS  Google Scholar 

  46. Zhukova, T. B. & Zaslavskii, A. I. Crystal Structures of PbBi4Te7, PbBi2Te4, SnBi4Te7, SnBi2Te4, SnSb2Te4,and GeBi4Te7 . Kristallografiya 16, 918–922 (1971).

    CAS  Google Scholar 

  47. Karpinskii, O. G., Shelimova, L. E., Avilov, E. S., Kretova, M. A. & Zemskov, V. S. X-ray diffraction study of mixed-layer compounds in the PbTe-Bi2Te3 system. Inorg. Chem. 38, 17–24 (2002).

    CAS  Google Scholar 

  48. Agaev, K. A. & Semiletov, S. A. Electron-diffraction study of the structure of PbBi2Se4 . Kristallografiya 13, 258–260 (1968).

    CAS  Google Scholar 

  49. Imamov, R. M., Semiletov, S. A. & Pinsker, Z. G. Crystal-chemical aspects of octahedral and mixed coordination semiconductors. Kristallografiya 15, 287–293 (1970).

    CAS  Google Scholar 

  50. Karpinskii, O. G., Shelimova, L. E., Kretova, M. A., Avilov, E. S. & Zemskov, V. S. X-ray diffraction study of mixed-layer compounds in the pseudobinary system SnTe-Bi2Te3 . Inorg. Chem. 39, 240–246 (2003).

    CAS  Google Scholar 

  51. Imamov, R. M., Semiletov, S. A. & Pinsker, Z. G. The crystal chemistry of semiconductors with octradral and with mixed atomic coordination. Kristallografiya 15, 239–243 (1970).

    Google Scholar 

  52. Shelimova, L. E. et al. Synthesis and structure of layered compounds in the PbTe-Bi2Te3 and PbTe-Sb2Te3 systems. Inorg. Chem. 40, 1264–1270 (2004).

    CAS  Google Scholar 

Download references

Acknowledgements

Research supported by the Office of Naval Research (ONR) (N00014-11-1-0136, N00014-10-1-0436) and National Science Foundation (NSF) (DMR-0639822). M.B.N. acknowledges partial support from the Office of Basic Energy Sciences, Department of Energy (DOE) at Oak Ridge National Laboratory (ORNL) under contract DE-AC05-00OR22725 with UT-Battelle, LLC. Computational resources provided by Teragrid (MCA-07S005) and by the Center for Nanophase Materials Sciences at ORNL (CNMS2010-206). The authors acknowledge fruitful discussions with J. Liu, J. Terry and M. Fornari.

Author information

Authors and Affiliations

Authors

Contributions

S.C. and W.S. developed the AFLOW framework. W.S., S.W. and S.C. developed the online materials repository aflowlib.org. K.Y. extended AFLOW to spin–orbit-coupling and topological insulator calculations. K.Y. performed the calculations. M.B.N. and S.C. provided guidance for the analysis completed by K.Y. and S.W. S.C. supervised the project. S.C. and M.B.N. wrote the article. All authors contributed to the revision of the article and to the discussion of the results.

Corresponding author

Correspondence to Stefano Curtarolo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 361 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, K., Setyawan, W., Wang, S. et al. A search model for topological insulators with high-throughput robustness descriptors. Nature Mater 11, 614–619 (2012). https://doi.org/10.1038/nmat3332

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3332

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing