Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthetic mast-cell granules as adjuvants to promote and polarize immunity in lymph nodes

Abstract

Granules of mast cells (MCs) enhance adaptive immunity when, on activation, they are released as stable particles. Here we show that submicrometre particles modelled after MC granules augment immunity when used as adjuvants in vaccines. The synthetic particles, which consist of a carbohydrate backbone with encapsulated inflammatory mediators such as tumour necrosis factor, replicate attributes of MCs in vivo including the targeting of draining lymph nodes and the timed release of the encapsulated mediators. When used as an adjuvant during vaccination of mice with haemagglutinin from the influenza virus, the particles enhanced adaptive immune responses and increased survival of mice on lethal challenge. Furthermore, differential loading of the particles with the cytokine IL-12 directed the character of the response towards Th1 lymphocytes. The synthetic MC adjuvants replicate and enhance the functions of MCs during vaccination, and can be extended to polarize the resulting immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthetic particles are modelled after MC-derived particles.
Figure 2: Physical characteristics of synthetic particles, and mediator encapsulation.
Figure 3: Synthetic particles flow freely to the draining LN.
Figure 4: Particulate TNF as an adjuvant promotes germinal-centre production.
Figure 5: Particulate TNF is an effective adjuvant that protects against a lethal flu challenge.
Figure 6: Differential particle loading with IL-12 promotes Th1 polarized immunity.

Similar content being viewed by others

References

  1. Lambrecht, B. N., Kool, M., Willart, M. A. & Hammad, H. Mechanism of action of clinically approved adjuvants. Curr. Opin Immunol. 21, 23–29 (2009).

    Article  CAS  Google Scholar 

  2. Martín-Fontecha, A. et al. Regulation of dendritic cell migration to the draining lymph node: Impact on T lymphocyte traffic and priming. J. Exp. Med. 198, 615–621 (2003).

    Article  Google Scholar 

  3. McLachlan, J. B. et al. Mast cell-derived tumor necrosis factor induces hypertrophy of draining lymph nodes during infection. Nature Immunol. 4, 1199–1205 (2003).

    Article  CAS  Google Scholar 

  4. Shelburne, C. P. et al. Mast cells augment adaptive immunity by orchestrating dendritic cell trafficking through infected tissues. Cell Host Microbe. 6, 331–342 (2009).

    Article  CAS  Google Scholar 

  5. Abraham, S. N. & St. John, A. L. Mast cell-orchestrated immunity to pathogens. Nature Rev. Immunol. 10, 440–452 (2010).

    Article  CAS  Google Scholar 

  6. Kunder, C. A. et al. Mast cell-derived particles deliver peripheral signals to remote lymph nodes. J. Exp. Med. 206, 2455–2467 (2009).

    Article  CAS  Google Scholar 

  7. McLachlan, J. B. et al. Mast cell activators: A new class of highly effective vaccine adjuvants. Nature Med. 14, 536–541 (2008).

    Article  CAS  Google Scholar 

  8. Bradney, C. P., Sempowski, G. D., Liao, H. X., Haynes, B. F. & Staats, H. F. Cytokines as adjuvants for the induction of anti-human immunodeficiency virus peptide immunoglobulin G (IgG) and IgA antibodies in serum and mucosal secretions after nasal immunization. J. Virol. 76, 517–524 (2002).

    Article  CAS  Google Scholar 

  9. Perrillo, R. Benefits and risks of interferon therapy for hepatitis B. Hepatology 49, S103–S111 (2009).

    Article  CAS  Google Scholar 

  10. Anderlini, P., Przepiorka, D., Champlin, R. & Korbling, M. Biologic and clinical effects of granulocyte colony-stimulating factor in normal individuals. Blood 88, 2819–2825 (1996).

    CAS  Google Scholar 

  11. Stevens, R. L. & Adachi, R. Protease–proteoglycan complexes of mouse and human mast cells and importance of their β-tryptase–heparin complexes in inflammation and innate immunity. Immunol. Rev. 217, 155–167 (2007).

    Article  CAS  Google Scholar 

  12. Roy, K., Mao, H. Q., Huang, S. K. & Leong, K. W. Oral gene delivery with chitosan–DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nature Med. 5, 387–391 (1999).

    Article  CAS  Google Scholar 

  13. Kuang, M. et al. Phase II randomized trial of autologous formalin-fixed tumor vaccine for postsurgical recurrence of hepatocellular carcinoma. Clin. Cancer Res. 10, 1574–1579 (2004).

    Article  CAS  Google Scholar 

  14. Hanes, J. et al. Controlled local delivery of interleukin-2 by biodegradable polymers protects animals from experimental brain tumors and liver tumors. Pharm. Res. 18, 899–906 (2001).

    Article  CAS  Google Scholar 

  15. VandeVord, P. J. et al. Evaluation of the biocompatibility of a chitosan scaffold in mice. J. Biomed. Mater. Res. 59, 585–590 (2002).

    Article  CAS  Google Scholar 

  16. Lane, D. A. & Adams, L. Non-anticoagulant uses of heparin. New Engl. J. Med. 329, 129–130 (1993).

    Article  CAS  Google Scholar 

  17. Phaechamud, T., Koizumi, T. & Ritthidej, G. C. Chitosan citrate as film former: Compatibility with water-soluble anionic dyes and drug dissolution from coated tablet. Int. J. Pharm. 198, 97–111 (2000).

    Article  CAS  Google Scholar 

  18. Hammel, I., Lagunoff, D. & Galli, S. J. Regulation of secretory granule size by the precise generation and fusion of unit granules. J. Cell Mol. Med. 14, 1904–1916 (2010).

    Article  CAS  Google Scholar 

  19. Ingulli, E., Ulman, D. R., Lucido, M. M. & Jenkins, M. K. In situ analysis reveals physical interactions between CD11b+ dendritic cells and antigen-specific CD4 T cells after subcutaneous injection of antigen. J. Immunol. 169, 2247–2252 (2002).

    Article  CAS  Google Scholar 

  20. Junt, T. et al. Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature 450, 110–114 (2007).

    Article  CAS  Google Scholar 

  21. Phan, T. G., Grigorova, I., Okada, T. & Cyster, J. G. Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells. Nature Immunol. 8, 992–1000 (2007).

    Article  CAS  Google Scholar 

  22. Klein, U. & Dalla-Favera, R. Germinal centres: Role in B-cell physiology and malignancy. Nature Rev. Immunol. 8, 22–33 (2008).

    Article  CAS  Google Scholar 

  23. Villiers, C. et al. From secretome analysis to immunology: Chitosan induces major alterations in the activation of dendritic cells via a TLR4-dependent mechanism. Mol. Cell Proteomics 8, 1252–1264 (2009).

    Article  CAS  Google Scholar 

  24. Sui, Z., Chen, Q., Fang, F., Zheng, M. & Chen, Z. Cross-protection against influenza virus infection by intranasal administration of M1-based vaccine with chitosan as an adjuvant. Vaccine 28, 7690–7698 (2010).

    Article  CAS  Google Scholar 

  25. Ghendon, Y., Markushin, S., Akopova, I., Koptiaeva, I. & Krivtsov, G. Chitosan as an adjuvant for poliovaccine. J. Med. Virol. 83, 847–852 (2011).

    Article  CAS  Google Scholar 

  26. Bhan, A. K., Nadler, L. M., Stashenko, P., McCluskey, R. T. & Schlossman, S. F. Stages of B cell differentiation in human lymphoid tissue. J. Exp. Med. 154, 737–749 (1981).

    Article  CAS  Google Scholar 

  27. Nimmerjahn, F. & Ravetch, J. V. Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science 310, 1510–1512 (2005).

    Article  CAS  Google Scholar 

  28. Pullen, G. R., Fitzgerald, M. G. & Hosking, C. S. Antibody avidity determination by ELISA using thiocyanate elution. J. Immunol. Methods 86, 83–87 (1986).

    Article  CAS  Google Scholar 

  29. Harris, S. L., Tsao, H., Ashton, L., Goldblatt, D. & Fernsten, P. Avidity of the immunoglobulin G response to a Neisseria meningitidis group C polysaccharide conjugate vaccine as measured by inhibition and chaotropic enzyme-linked immunosorbent assays. Clin. Vaccine Immunol. 14, 397–403 (2007).

    Article  CAS  Google Scholar 

  30. Marcus, H. et al. Contribution of immunological memory to protective immunity conferred by a Bacillus anthracis protective antigen-based vaccine. Infect. Immun. 72, 3471–3477 (2004).

    Article  CAS  Google Scholar 

  31. McCloskey, N., Turner, M. W. & Goldblatt, T. D. Correlation between the avidity of mouse–human chimeric IgG subclass monoclonal antibodies measured by solid-phase elution ELISA and biospecific interaction analysis (BIA). J. Immunol. Methods 205, 67–72 (1997).

    Article  CAS  Google Scholar 

  32. Stetson, D. B. & Medzhitov, R. Type I interferons in host defense. Immunity 25, 373–381 (2006).

    Article  CAS  Google Scholar 

  33. Afonso, L. C. et al. The adjuvant effect of interleukin-12 in a vaccine against Leishmania major. Science 263, 235–237 (1994).

    Article  CAS  Google Scholar 

  34. Mosca, F. et al. Molecular and cellular signatures of human vaccine adjuvants. Proc. Natl Acad. Sci. USA 105, 10501–10506 (2008).

    Article  CAS  Google Scholar 

  35. Datta, S. K. et al. Mucosal adjuvant activity of cholera toxin requires Th17 cells and protects against inhalation anthrax. Proc. Natl Acad. Sci. USA 107, 10638–10643 (2010).

    Article  CAS  Google Scholar 

  36. De Gregorio, E., D’Oro, U. & Wack, A. Immunology of TLR-independent vaccine adjuvants. Curr. Opin. Immunol. 21, 339–345 (2009).

    Article  CAS  Google Scholar 

  37. Galli, S. J., Nakae, S. & Tsai, M. Mast cells in the development of adaptive immune responses. Nature Immunol. 6, 135–142 (2005).

    Article  CAS  Google Scholar 

  38. Liang, M. T., Davies, N. M., Blanchfield, J. T. & Toth, I. Particulate systems as adjuvants and carriers for peptide and protein antigens. Curr. Drug Deliv. 3, 379–388 (2006).

    Article  CAS  Google Scholar 

  39. Kasturi, S. P. et al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature 470, 543–547 (2011).

    Article  CAS  Google Scholar 

  40. Jewell, C. M., Lopez, S. C. & Irvine, D. J. In situ engineering of the lymph node microenvironment via intranodal injection of adjuvant-releasing polymer particles. Proc. Natl Acad. Sci. USA 108, 15745–15750 (2011).

    Article  CAS  Google Scholar 

  41. Singh, M. et al. Cationic microparticles are an effective delivery system for immune stimulatory cpG DNA. Pharm. Res. 18, 1476–1479 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. A. Kunder, B. Berwin and A. Alonso for their contributions to producing the image in Fig. 1a. L. Eibist is thanked for her assistance in acquiring the EM of synthetic particles. We also thank A. P. S. Rathore and W. X. G. Ang for their manuscript review and discussions. The authors’ work is supported by the US National Institutes of Health grants R01 AI96305, R01 AI35678, R01 DK077159, R01 AI50021, R37 DK50814 and R21 AI056101.

Author information

Authors and Affiliations

Authors

Contributions

Experiments were designed by A.L.S. and S.N.A., with H.F.S. contributing to the experimental design of vaccination studies and K.W.L. contributing to the experimental design of studies relating to particle synthesis and characterization. Experiments were carried out by A.L.S. and C.Y.C. Data was analysed by A.L.S. and C.Y.C. with advice from S.N.A. and H.F.S. The manuscript was written primarily by A.L.S. All authors contributed to discussions and manuscript review.

Corresponding author

Correspondence to Ashley L. St. John.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 512 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

St. John, A., Chan, C., Staats, H. et al. Synthetic mast-cell granules as adjuvants to promote and polarize immunity in lymph nodes. Nature Mater 11, 250–257 (2012). https://doi.org/10.1038/nmat3222

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3222

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing