Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate

Abstract

Stem cells sense and respond to the mechanical properties of the extracellular matrix. However, both the extent to which extracellular-matrix mechanics affect stem-cell fate in three-dimensional microenvironments and the underlying biophysical mechanisms are unclear. We demonstrate that the commitment of mesenchymal stem-cell populations changes in response to the rigidity of three-dimensional microenvironments, with osteogenesis occurring predominantly at 11–30 kPa. In contrast to previous two-dimensional work, however, cell fate was not correlated with morphology. Instead, matrix stiffness regulated integrin binding as well as reorganization of adhesion ligands on the nanoscale, both of which were traction dependent and correlated with osteogenic commitment of mesenchymal stem-cell populations. These findings suggest that cells interpret changes in the physical properties of adhesion substrates as changes in adhesion-ligand presentation, and that cells themselves can be harnessed as tools to mechanically process materials into structures that feed back to manipulate their fate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Matrix compliance alters MSC fate in 3D matrix culture.
Figure 2: Cell and nuclear morphology are not strongly correlated to mechanics of 3D matrices.
Figure 3: Mechanically controlled α5-integrin–RGD bond formation correlates with stem-cell osteogenic lineage in three dimensions.
Figure 4: Cell–RGD bond formation shows a biphasic dependence on matrix stiffness.
Figure 5: Cell-traction-mediated reorganization of ligands presented by synthetic ECM.
Figure 6: Long-term regulation of osteogenic commitment and role of specific integrins in stem-cell fate in 3D matrices.

Similar content being viewed by others

References

  1. Passier, R., van Laake, L. W. & Mummery, C. L. Stem-cell based therapy and lessons from the heart. Nature 453, 322–329 (2008).

    Article  CAS  Google Scholar 

  2. Silva, E. A., Kim, E. S., Kong, H. J. & Mooney, D. J. Material-based deployment enhances efficacy of endothelial progenitor cells. Proc. Natl Acad. Sci. USA 105, 14347–14352 (2008).

    Article  CAS  Google Scholar 

  3. Ali, O. A., Huebsch, N., Cao, L., Dranoff, G. & Mooney, D. J. Infection-mimicking materials to program dendritic cells in situ. Nature Mater. 8, 151–158 (2009).

    Article  CAS  Google Scholar 

  4. Hynes, R. O. Integrins: Bidirectional, allosteric signalling machines. Cell 110, 673–687 (2002).

    Article  CAS  Google Scholar 

  5. Geiger, B. & Bershadsky, A. Exploring the neighbourhood: Adhesion-coupled mechanosensors. Cell 110, 139–142 (2002).

    Article  CAS  Google Scholar 

  6. Alsberg, E., Anderson, K. W., Albeiruti, A., Rowley, J. A. & Mooney, D. J. Engineering growing tissues. Proc. Natl Acad. Sci. USA 99, 12025–12030 (2002).

    Article  CAS  Google Scholar 

  7. Yang, F. et al. The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells. Biomaterials 26, 5991–5998 (2005).

    Article  CAS  Google Scholar 

  8. Burdick, J. A. & Anseth, K. S. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials 32, 4315–4323 (2002).

    Article  Google Scholar 

  9. Klees, R. F. et al. Laminin-5 induces osteogenic gene expression in human mesenchymal stem cells through an ERK-dependent pathway. Mol. Biol. Cell 16, 881–890 (2005).

    Article  CAS  Google Scholar 

  10. Engler, A. J., Sen, S., Sweeny, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  Google Scholar 

  11. Kong, H. J., Polte, T. R., Alsberg, E. & Mooney, D. J. FRET measurements of cell-traction forces and nano-scale clustering of adhesion ligands varied by substrate stiffness. Proc. Natl Acad. Sci. USA 102, 4300–4305 (2005).

    Article  CAS  Google Scholar 

  12. Cukierman, E., Pankov, R., Stevens, D. R. & Yamada, K. M. Taking cell-matrix adhesions to the third dimension. Science 294, 1708–1712 (2001).

    Article  CAS  Google Scholar 

  13. Fischbach, C. et al. Cancer cell angiogenic capability is regulated by 3-D culture and integrin engagement. Proc. Natl Acad. Sci. USA 106, 399–404 (2009).

    Article  CAS  Google Scholar 

  14. Griffith, L. G. & Swartz, M. A. Capturing complex 3D tissue physiology in vitro. Nature Rev. Mol. Cell Biol. 7, 211–224 (2006).

    Article  CAS  Google Scholar 

  15. Hsiong, S. X., Boontheekul, T., Huebsch, N. & Mooney, D. J. Cyclic RGD peptides enhance 3D stem cell osteogenic differentiation. Tissue Eng. A 15, 263–272 (2009).

    Article  CAS  Google Scholar 

  16. Diduch, D. R., Coe, M. R., Joyner, C., Owen, M. E. & Balian, G. Two cell lines from bone marrow that differ in terms of collagen synthesis, osteogenic characteristics, and matrix mineralization. J. Bone Joint Surg. Am. 75, 92–105 (1993).

    Article  CAS  Google Scholar 

  17. Rowley, J. A., Madlambayan, G. & Mooney, D. J. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20, 45–53 (1999).

    Article  CAS  Google Scholar 

  18. Alsberg, E. et al. Regulating bone formation via controlled scaffold degradation. J. Dent. Res. 80, 2025–2029 (2001).

    Article  CAS  Google Scholar 

  19. Lutolf, M. P. et al. Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nature Biotechnol. 21, 513–518 (2003).

    Article  CAS  Google Scholar 

  20. Connelly, J. T., Garcia, A. J. & Levenston, M. E. Interactions between integrin ligand density and cytoskeletal integrity regulate BMSC chondrogenesis. J. Cell. Physiol. 217, 145–154 (2008).

    Article  CAS  Google Scholar 

  21. Bencherif, S. A. et al. Influence of the degree of methacrylation on hyaluronic acid hydrogels properties. Biomaterials 29, 1739–1749 (2008).

    Article  CAS  Google Scholar 

  22. Pek, Y. S., Wan, A. C. A. & Ying, J. Y. The effect of matrix stiffness on mesenchymal stem cell differentiation in a 3D thioxtropic gel. Biomaterials 31, 385–391 (2010).

    Article  CAS  Google Scholar 

  23. Ghajar, C. M. et al. The effect of matrix density on the regulation of 3-D capillary morphogenesis. Biophys. J. 94, 1930–1941 (2008).

    Article  CAS  Google Scholar 

  24. Pelham, R. J. Jr & Wang, Y. L. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94, 13661–13665 (1997).

    Article  CAS  Google Scholar 

  25. Jiang, G., Huang, A. H., Cai, Y., Tanase, M. & Sheetz, M. P. Rigidity sensing at the leading edge through αVβ3 integrins and RPTPα. Biophys. J. 90, 1804–1809 (2006).

    Article  CAS  Google Scholar 

  26. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004).

    Article  CAS  Google Scholar 

  27. Benoit, D. S., Schwartz, M. P., Durney, A. R. & Anseth, K. S. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nature Mater. 7, 816–823 (2008).

    Article  CAS  Google Scholar 

  28. Thomas, C. H., Collier, J. H., Sfeir, C. S. & Healy, K. E. Engineering gene expression and protein synthesis by modulation of nuclear shape. Proc. Natl Acad. Sci. USA 99, 1972–1977 (2002).

    Article  CAS  Google Scholar 

  29. Discher, D. E., Janmey, P. & Wang, Y. L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    Article  CAS  Google Scholar 

  30. Ingber, D. E. Cellular mechanotransduction: Putting all the pieces together again. FASEB J. 20, 811–827 (2006).

    Article  CAS  Google Scholar 

  31. del Rio, A. et al. Stretching single talin rod molecules activates vinculin binding. Science 323, 638–641 (2009).

    Article  CAS  Google Scholar 

  32. Baneyx, G., Baugh, L. & Vogel, V. Fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension. Proc. Natl Acad. Sci. USA 99, 5139–5143 (2002).

    Article  CAS  Google Scholar 

  33. Johnson, C. P., Tang, H. Y., Carag, C., Speicher, D. W. & Discher, D. E. Forced unfolding of proteins within cells. Science 317, 663–666 (2007).

    Article  CAS  Google Scholar 

  34. Chung, E. H. et al. Biomimetic artificial ECMs stimulate bone regeneration. J. Biomed. Mater. Res. A 79, 815–826 (2006).

    Article  Google Scholar 

  35. Engler, A. J. et al. Substrate compliance versus ligand density in cell on gel responses. Biophys. J. 86, 617–628 (2004).

    Article  CAS  Google Scholar 

  36. Bell, G. I. Models for the specific adhesion of cells to cells. Science 200, 618–627 (1978).

    Article  CAS  Google Scholar 

  37. Dembo, M., Torney, D. C., Saxman, K. & Hammer, D. The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc. R. Soc. Lond. B 234, 55–83 (1988).

    Article  CAS  Google Scholar 

  38. Marshall, B. T. et al. Direct observation of catch bonds involving cell-adhesion molecules. Nature 423, 190–193 (2003).

    Article  CAS  Google Scholar 

  39. Kong, F., Garcia, A. J., Mould, A. P., Humphries, M. J. & Zhu, C. Demonstration of catch bonds between an integrin and its ligand. J. Cell Biol. 185, 1275–1284 (2009).

    Article  CAS  Google Scholar 

  40. Aota, S., Nomizu, M. & Yamada, K. M. The short amino acid sequence Pro–His–Ser–Arg–Asn in human fibronectin enhances cell-adhesive function. J. Biol. Chem. 269, 24756–24761 (1994).

    CAS  Google Scholar 

  41. Kong, H. J., Boontheekul, T. & Mooney, D. J. Quantifying the relation between ligand–receptor bond formation and cell phenotype. Proc. Natl Acad. Sci. USA 103, 18534–18539 (2006).

    Article  CAS  Google Scholar 

  42. Lakowicz, J. T. Principles of Fluorescence Spectroscopy 3rd edn (Springer, 2006).

    Book  Google Scholar 

  43. Huebsch, N. D. & Mooney, D. J. Fluorescent resonance energy transfer: A tool for probing molecular cell–biomaterial interactions in three dimensions. Biomaterials 28, 2424–2437 (2007).

    Article  CAS  Google Scholar 

  44. Hern, D. L. & Hubbell, J. A. Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J. Biomed. Mater. Res. 32, 266–276 (1998).

    Article  Google Scholar 

  45. Galbraith, C. G., Yamada, K. M. & Sheetz, M. P. The relationship between force and focal complex development. J. Cell Biol. 159, 695–705 (2002).

    Article  CAS  Google Scholar 

  46. Danen, E. H. et al. Requirement for the synergy site for cell adhesion to fibronectin depends on the activation state of integrin α5β1 . J. Biol. Chem. 270, 21612–21618 (1995).

    Article  CAS  Google Scholar 

  47. Friedland, J. C., Lee, M. H. & Boettiger, D. Mechanically activated integrin switch controls α5β1 function. Science 323, 642–644 (2009).

    Article  CAS  Google Scholar 

  48. Galbraith, C. G., Yamada, K. M. & Galbraith, J. A. Polymerizing actin fibers position integrins primed to probe for adhesion sites. Science 315, 992–995 (2007).

    Article  CAS  Google Scholar 

  49. Brown, C. M. et al. Probing the integrin–actin linkage using high-resolution protein velocity mapping. J. Cell Sci. 119, 5204–5214 (2006).

    Article  CAS  Google Scholar 

  50. Ward, M. D. & Dembo, M. Kinetics of cell detachment: Peeling of discrete receptor clusters. Biophys. J. 67, 2522–2534 (1994).

    Article  CAS  Google Scholar 

  51. Keselowsky, B. G., Collard, D. M. & Garcia, A. J. Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc. Natl Acad. Sci. USA 102, 5953–5957 (2005).

    Article  CAS  Google Scholar 

  52. Lai, C. F. & Cheng, S. L. αvβ integrins play an essential role in BMP-2 induction of osteoblast differentiation. J. Bone Miner. Res. 20, 330–340 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. F. Horwitz for providing the human α5-integrin–enhanced GFP plasmid, and B. Tilton for carrying out FACs sorting of GFP-expressing mMSCs at the Harvard FAS Center for Systems Biology. We also thank E. Gatzogiannis for assisting with confocal microscopy at the Harvard University Center for Nanoscale Systems (CNS). The monoclonal antibody against osteopontin (MPIIIB101) developed by M. Solursh and A. Franzen was obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by the University of Iowa, Department of Biology, Iowa City, IA. We acknowledge R. Schmidt and K. E. Healy (University of California, Berkeley) for advice regarding nuclear morphology measurements, A. Putnam (University of Michigan), H. J. Kong, C. Fischbach and S. Hsiong for discussions, and H. Vandenburgh (Brown University) and Z. Suo for critical reading of the manuscript. We also acknowledge funding from NIH (R37 DE013033) and from the NIH ‘Systems-Based Consortium for Organ Design and Engineering’ training grant (J.R-F., 1TL1EB008540-01, NIBIB), a Harvard Presidential Fellowship (P.R.A.), an NSF Graduate Research Fellowship (N.H.), the Harvard College Research Program (A.S.M.), an EMBO Long-Term Fellowship ALTF 42-2008 (D.S.) and the Wyss Institute for Biologically Inspired Engineering (S.A.B.).

Author information

Authors and Affiliations

Authors

Contributions

The experiments were designed by N.H., P.R.A. and D.J.M. and carried out by N.H., P.R.A., A.S.M., D.S. and O.A.A. N.H., S.A.B. and J.R-F. provided new reagents/analytical tools. The manuscript was written by N.H. and D.J.M. The principal investigator is D.J.M.

Corresponding author

Correspondence to David J. Mooney.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1055 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huebsch, N., Arany, P., Mao, A. et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nature Mater 9, 518–526 (2010). https://doi.org/10.1038/nmat2732

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2732

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing