Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Isotope effect in spin response of π-conjugated polymer films and devices

Abstract

Recent advances in organic spin response include long polaron spin-coherence times measured by optically detected magnetic resonance (ODMR), substantive room-temperature magnetoelectroluminescence and magnetoconductance obtained in organic light-emitting diodes (OLEDs) and spin-polarized carrier injection from ferromagnetic electrodes in organic spin valves (OSVs). Although the hyperfine interaction (HFI) has been foreseen to have an important role in organic spin response, no clear experimental evidence has been reported so far. Using the chemical versatility advantage of the organics, we studied and compared spin responses in films, OLED and OSV devices based on π-conjugated polymers made of protonated, H-, and deuterated, D-hydrogen having a weaker HFI strength. We demonstrate that the HFI does indeed have a crucial role in all three spin responses. OLED films based on the D-polymers show substantially narrower magneto-electroluminescence and ODMR responses, and as a result of the longer spin diffusion obtained, OSV devices based on D-polymers show a substantially larger magnetoresistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: D- and H-polymer structures and their basic optical properties.
Figure 2: Isotope dependence of the spin-1/2 ODMR response in DOO-PPV polymers.
Figure 3: Isotope dependence of the MEL response in OLEDs based on DOO-PPV polymers.
Figure 4: Isotope dependence of the magnetoresistance response in OSVs based on DOO-PPV polymers.

Similar content being viewed by others

References

  1. Naber, W. J. M., Faez, S. & van der Wiel, W. G. Organic spintronics. J. Phys. D 40, R205–R228 (2007).

    Article  CAS  Google Scholar 

  2. Xiong, Z. H., Wu, D., Vardeny, Z. V. & Shi, J. Giant magnetoresistance in organic spin-valves. Nature 427, 821–824 (2004).

    Article  CAS  Google Scholar 

  3. Ruden, P. & Smith, D. L. Theory of spin injection into conjugated organic semiconductors. J. Appl. Phys. 95, 4898–4904 (2004).

    Article  CAS  Google Scholar 

  4. Pramanik, S. et al. Observation of extremely long spin relaxation times in an organic nanowire spin valve. Nature Nanotech. 2, 216–219 (2007).

    Article  CAS  Google Scholar 

  5. McCamey, D. R. et al. Spin Rabi flopping in the photocurrent of a polymer light-emitting diode. Nature Mater. 7, 723–727 (2008).

    Article  CAS  Google Scholar 

  6. Majumdar, S. et al. Application of regioregular polythiophene in spintronic devices; effect of interface. Appl. Phys. Lett. 89, 122114 (2006).

    Article  Google Scholar 

  7. Wang, F. J., Yang, C. G., Vardeny, Z. V. & Li, X. Spin response in organic spin valves based on La2/3Sr1/3MnO3 electrodes. Phys. Rev. B 75, 245324 (2007).

    Article  Google Scholar 

  8. Hueso, L. E. et al. Multipurpose magnetic organic hybrid devices. Adv. Mater. 19, 2639–2642 (2007).

    Article  CAS  Google Scholar 

  9. Santos, T. S. et al. Room temperature tunnelling magnetoresistance and spin-polarized tunnelling through an organic semiconductor barrier. Phys. Rev. Lett. 98, 016601 (2007).

    Article  CAS  Google Scholar 

  10. Tombros, N. et al. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448, 571–575 (2007).

    Article  CAS  Google Scholar 

  11. Dediu, V. et al. Room-temperature spintronic effects in Alq3-based hybrid devices. Phys. Rev. B 78, 115203 (2008).

    Article  Google Scholar 

  12. Vinzelberg, H. et al. Low temperature tunnelling magnetoresistance on La2/3Sr1/3MnO3/Co junctions with organic spacer layers. J. Appl. Phys. 103, 093720 (2008).

    Article  Google Scholar 

  13. Drew, A. J. et al. Direct measurement of the electronic spin diffusion length in a fully functional organic spin valve by low-energy muon spin rotation. Nature Mater. 8, 109–114 (2009).

    Article  CAS  Google Scholar 

  14. Bobbert, P. A. et al. Theory for spin diffusion in disordered organic semiconductors. Phys. Rev. Lett. 102, 156604 (2009).

    Article  CAS  Google Scholar 

  15. Pulizzi, F. Why going organic is good. Nature Mater. 8, 691 (2009).

    Article  Google Scholar 

  16. Carrington, A. & McLachlan, A. D. Introduction to Magnetic Resonance (Harper & Row, 1967).

    Google Scholar 

  17. Yang, C. G., Ehrenfreund, E. & Vardeny, Z. V. Polaron spin-lattice relaxation time obtained from ODMR dynamics in π-conjugated polymers. Phys. Rev. Lett. 99, 157401 (2007).

    Article  CAS  Google Scholar 

  18. Kalinowski, J. et al. Magnetic field effects on emission and current in Alq3-based electroluminescent diodes. Chem. Phys. Lett. 380, 710–715 (2003).

    Article  CAS  Google Scholar 

  19. Mermer, Ö. et al. Large magnetoresistance in nonmagnetic π-conjugated semiconductor thin film devices. Phys. Rev. B 72, 205202 (2005).

    Article  Google Scholar 

  20. Bobbert, P. A. et al. Bipolaron mechanism for organic magnetoresistance. Phys. Rev. Lett. 99, 216801 (2007).

    Article  CAS  Google Scholar 

  21. Bloom, F. L., Wagemans, W., Kemerink, M. & Koopmans, B. Separating positive and negative magnetoresistance in organic semiconductor devices. Phys. Rev. Lett. 99, 257201 (2007).

    Article  CAS  Google Scholar 

  22. Hu, B. & Wu, Y. Tuning magnetoresistance between positive and negative values in organic semiconductors. Nature Mater. 6, 985–991 (2007).

    Article  CAS  Google Scholar 

  23. Nguyen, T. D., Sheng, Y., Rybicki, J. & Wohlgenannt, M. Magnetic field-effects in bipolar, almost hole-only and almost electron-only Alq3 devices. Phys. Rev. B 77, 235209 (2008).

    Article  Google Scholar 

  24. Bergeson, J. D., Prigodin, V. N., Lincoln, D. M. & Epstein, A. J. Inversion of magnetoresistance in organic semiconductors. Phys. Rev. Lett. 100, 067201 (2008).

    Article  CAS  Google Scholar 

  25. Wang, F., Bässler, H. & Vardeny, Z. V. Studies of magnetoresistance in polymer/fullerene blends. Phys. Rev. Lett. 101, 236805 (2008).

    Article  CAS  Google Scholar 

  26. Majumdar, S. et al. Role of electron–hole pair formation in organic magnetoresistance. Phys. Rev. B 79, 201202(R) (2009).

    Article  Google Scholar 

  27. Vardeny, Z. V., Brafman, O. & Ehrenfreund, E. Isotope effect in resonant Raman scattering and induced IR spectra of trans polyacetylene. Solid State Commun. 53, 615–620 (1985).

    Google Scholar 

  28. Weinberger, B. R. et al. Electron spin resonance studies of magnetic soliton defects in polyacetylene. J. Chem. Phys. 72, 4749–4755 (1980).

    Article  CAS  Google Scholar 

  29. Yang, C. G., Ehrenfreund, E., Wang, F. & Vardeny, Z. V. Spin dependent kinetics of polaron pairs in organic light emitting diodes studied by ELDMR dynamics. Phys. Rev. B 78, 205312 (2008).

    Article  Google Scholar 

  30. Abragam, A. The Principles of Nuclear Magnetism (Oxford Univ. Press, 1961).

    Google Scholar 

  31. Lupton, J. M. & Boehme, Ch. Magnetoresistance in organic semiconductors; correspondence to the Editor. Nature Mater. 7, 598–599 (2008).

    Article  CAS  Google Scholar 

  32. Hu, B. & Wu, Y. Response to correspondence to the Editor. Nature Mater. 7, 600–601 (2008).

    Article  Google Scholar 

  33. Bloom, F. L., Kemerink, M., Wagemans, W. & Koopmans, B. Sign inversion of magnetoresistance in space-charge limited organic devices. Phys. Rev. Lett. 103, 066601 (2009).

    Article  CAS  Google Scholar 

  34. Groff, R. P., Suna, A., Avakian, P. & Merrifield, R. E. Magnetic hyperfine modulation of dye-sensitized delayed fluorescence in organic crystals. Phys. Rev. B 9, 2655–2660 (1974).

    Article  CAS  Google Scholar 

  35. Timmel, C. R. et al. Effects of weak magnetic fields on free radical recombination reactions. Mol. Phys. 95, 71–89 (1998).

    Article  CAS  Google Scholar 

  36. Hayashi, H. Introduction to Dynamic Spin Chemistry; Magnetic Field Effects on Chemical and Biochemical Reactions (World Scientific Lecture and Course Notes in Chemistry Vol. 8, World Scientific Publishing, 2004).

    Book  Google Scholar 

  37. Weller, A., Nolting, F. & Staerk, H. A quantitative interpretation of the magnetic field effect on hyperfine-coupling-induced triplet formation from radical ion pairs. Chem. Phys. Lett. 96, 24–27 (1983).

    Article  CAS  Google Scholar 

  38. Sheng, Y. et al. Hyperfine interaction and magnetoresistance in organic semiconductors. Phys. Rev. B 74, 045213 (2006).

    Article  Google Scholar 

  39. Desai, P., Shakya, P., Kreouzis, T. & Gillin, W. P. Magnetoresistance in organic light-emitting diode structures under illumination. Phys. Rev. B 76, 235202 (2007).

    Article  Google Scholar 

  40. Brocklehurst, B. & McLauchlan, K. A. Free radical mechanism for the effects of environmental electromagnetic fields on biological systems. Int. J. Radiat. Biol. 69, 3–24 (1996).

    Article  CAS  Google Scholar 

  41. Belaid, R. et al. Magnetic field effect on recombination light in anthracene crystal. Synth. Metals 131, 23–30 (2002).

    Article  CAS  Google Scholar 

  42. Fert, A. Nobel Lecture: Origin, development, and future of spintronics. Rev. Mod. Phys. 80, 1517–1530 (2008).

    Article  CAS  Google Scholar 

  43. Dediu, V. A., Hueso, L. E., Bergenti, I. & Taliani, C. Spin routes in organic semiconductors. Nature Mater. 8, 707–716 (2009).

    Article  CAS  Google Scholar 

  44. Jullière, M. Tunneling between ferromagnetic films. Phys. Lett. A 54, 225–226 (1975).

    Article  Google Scholar 

  45. Zhang, J. & White, R. M. Voltage dependence of magnetoresistance in spin dependent tunnelling junctions. J. Appl. Phys. 83, 6512–6514 (1998).

    Article  CAS  Google Scholar 

  46. Sheng, L., Xing, D. Y. & Sheng, D. N. Theory of the zero-bias anomaly in magnetic tunnel junction. Phys. Rev. B 70, 094416 (2004).

    Article  Google Scholar 

  47. Rolfe, N. J. et al. Elucidating the role of HFI on organic MR using deuterated Alq3 . Phys. Rev. B 80, 241201 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Polson for the Raman scattering measurements of the two polymers, and M. Wohlgenannt for useful discussions. This work was supported in part by the Department of Energy (Grant No. 04-ER46109; Z.V.V.), the NSFC and National Basic Research Program of China (Grant 2009CB929502; X-G.L.) and the Israel Science Foundation (ISF 745/08; E.E.). Z.V.V. wishes to thank the Lady Davis foundation for helping his stay at the Technion during spring 2009, where part of the present work was conceived.

Author information

Authors and Affiliations

Authors

Contributions

T.D.N. was responsible for the OLED and OSV device fabrication and measurements; G.H-M. was responsible for the ODMR measurements; F.W. was responsible for the MFE and OSV system apparatus and magneto-optic Kerr effect measurements; L.W. was responsible for the synthesis of the D- and H- polymers; X-G.L. was responsible for growing the LSMO substrates; E.E. was responsible for the ODMR and MEL analysis and model fittings; Z.V.V. was responsible for project planning, group managing and first draft writing.

Corresponding author

Correspondence to Z. Valy Vardeny.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 543 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, T., Hukic-Markosian, G., Wang, F. et al. Isotope effect in spin response of π-conjugated polymer films and devices. Nature Mater 9, 345–352 (2010). https://doi.org/10.1038/nmat2633

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2633

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing