Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhancement of ferroelectricity at metal–oxide interfaces

Abstract

The development of ultrathin ferroelectric capacitors for use in memory applications has been hampered by depolarization effects arising from the electrode–film interfaces. These can be characterized in terms of a reduced interface capacitance, or equivalently an ‘effective dead layer’ in contact with the electrode. Here, by performing first-principles calculations on four capacitor structures based on BaTiO3 and PbTiO3, we determine the intrinsic interfacial effects responsible for destabilizing the ferroelectric state in ultrathin-film devices. Although it has been widely believed that these are governed by the electronic screening properties at the interface, we show that they also depend crucially on the local chemical environment through the force constants of the metal oxide bonds. In particular, in the case of interfaces formed between AO-terminated perovskites and simple metals, we demonstrate a novel mechanism of interfacial ferroelectricity that produces an overall enhancement of the ferroelectric instability of the film, rather than its suppression as is usually assumed. The resulting ‘negative dead layer’ suggests a route to thin-film ferroelectric devices that are free of deleterious size effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inverse local permittivity profiles for symmetric capacitor structures studied in this work.
Figure 2: Plots of Callen dynamical charges, arranged head to head and tail to tail to emphasize rapid convergence to common bulk values.
Figure 3: Schematic representation of the salient features of the Pt2–AO interface.
Figure 4: Ionic displacements induced by a small field of D=10−3 a.u. (0.455 μC cm−2).
Figure 5: Computed local properties at the BTO–Au interface.

Similar content being viewed by others

References

  1. Dawber, M., Rabe, K. M. & Scott, J. F. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083–1130 (2005).

    Article  CAS  Google Scholar 

  2. Hwang, C. S. Thickness-dependent dielectric constant of (Ba,Sr)TiO3 thin films with Pt or conducting oxide electrodes. J. Appl. Phys. 92, 432–437 (2002).

    Article  CAS  Google Scholar 

  3. Plonka, R., Dittmann, R., Pertsev, N. A., Vasco, E. & Waser, R. Impact of the top-electrode material on the permittivity of single-crystalline Ba0.7Sr0.3TiO3 thin films. Appl. Phys. Lett. 86, 202908 (2005).

    Article  Google Scholar 

  4. Kim, D. J. et al. Polarization relaxation induced by a depolarization field in ultrathin ferroelectric BaTiO3 capacitors. Phys. Rev. Lett. 95, 237602 (2005).

    Article  CAS  Google Scholar 

  5. Junquera, J. & Ghosez, P. First-principles study of ferroelectric oxide epitaxial thin films and superlattices: Role of the mechanical and electrical boundary conditions. J. Comput. Theor. Nanosci. 5, 2071–2088 (2008).

    Article  CAS  Google Scholar 

  6. Junquera, J. & Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506–509 (2003).

    Article  CAS  Google Scholar 

  7. Pertsev, N. A., Dittmann, R., Plonka, R. & Waser, R. Thickness dependence of the intrinsic dielectric response and apparent interfacial capacitance in ferroelectric thin films. J. Appl. Phys. 86, 202908 (2005).

    Google Scholar 

  8. Black, C. T. & Welser, J. J. Electric-field penetration into metals: Consequences for high-dielectric constant capacitors. IEEE Trans. Electron Devices 46, 776–780 (1999).

    Article  CAS  Google Scholar 

  9. Tagantsev, A. K. & Gerra, G. Interface-induced phenomena in polarization response of ferroelectric thin films. J. Appl. Phys. 100, 051607 (2006).

    Article  Google Scholar 

  10. Cohen, R. E. Periodic slab LAPW computations for ferroelectric BaTiO3 . J. Phys. Chem. Sol. 57, 1393–1396 (1996).

    Article  CAS  Google Scholar 

  11. Cohen, R. E. Surface effects in ferroelectrics: Periodic slab computations for BaTiO3 . Ferroelectrics 194, 323–342 (1997).

    Article  CAS  Google Scholar 

  12. Rao, F. Y., Kim, M. Y., Freeman, A. J., Tang, S. P. & Anthony, M. Structural and electronic properties of transition-metal/BaTiO3(001) interfaces. Phys. Rev. B 55, 13953–13960 (1997).

    Article  CAS  Google Scholar 

  13. Rabe, K. M. Theoretical investigations of epitaxial strain effects in ferroelectric oxide thin films and superlattices. Curr. Opin. Solid State Mater. Sci. 9, 122–127 (2005).

    Article  CAS  Google Scholar 

  14. Ederer, C. & Spaldin, N. A. Effect of epitaxial strain on the spontaneous polarization of thin film ferroelectrics. Phys. Rev. Lett. 95, 257601 (2005).

    Article  Google Scholar 

  15. Sai, N., Kolpak, A. M. & Rappe, A. M. Ferroelectricity in ultrathin perovskite films. Phys. Rev. B 72, 020101(R) (2005).

    Article  Google Scholar 

  16. Umeno, Y., Meyer, B., Elsässer, C. & Gumbsch, P. Ab initio study of the critical thickness for ferroelectricity in ultrathin Pt/PbTiO3/Pt films. Phys. Rev. B 74, 060101(R) (2006).

    Article  Google Scholar 

  17. Gerra, G., Tagantsev, A. K., Setter, N. & Parlinski, K. Ionic polarizability of conductive metal oxides and critical thickness for ferroelectricity in BaTiO3 . Phys. Rev. Lett. 96, 107603 (2006).

    Article  CAS  Google Scholar 

  18. Gerra, G., Tagantsev, A. K. & Setter, N. Ferroelectricity in asymmetric metal–ferroelectric–metal heterostructures: A combined first-principles–phenomenological approach. Phys. Rev. Lett. 98, 207601 (2007).

    Article  CAS  Google Scholar 

  19. Stengel, M. & Spaldin, N. A. Ab-initio theory of metal–insulator interfaces in a finite electric field. Phys. Rev. B 75, 205121 (2007).

    Article  Google Scholar 

  20. Stengel, M., Spaldin, N. A. & Vanderbilt, D. Electric displacement as the fundamental variable in electronic-structure calculations. Nature Phys. 5, 304–308 (2009).

    Article  CAS  Google Scholar 

  21. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  22. Stengel, M. & Spaldin, N. A. Origin of the dielectric dead layer in nanoscale capacitors. Nature 443, 679–682 (2006).

    Article  CAS  Google Scholar 

  23. Choi, W. S. et al. Dielectric constants of Ir, Ru, Pt, and IrO2: Contributions from bound charges. Phys. Rev. B 74, 205117 (2006).

    Article  Google Scholar 

  24. Ghosez, P., Michenaud, J.-P. & Gonze, X. Dynamical atomic charges: The case of ABO3 compounds. Phys. Rev. B 58, 6224–6239 (1998).

    Article  CAS  Google Scholar 

  25. Antons, A., Neaton, J. B., Rabe, K. M. & Vanderbilt, D. Tunability of the dielectric response of epitaxially strained SrTiO3 from first-principles. Phys. Rev. B 71, 024102 (2005).

    Article  Google Scholar 

  26. Giustino, F. & Pasquarello, A. Infrared spectra at surfaces and interfaces from first principles: Evolution of the spectra across the Si(100)–SiO2 interface. Phys. Rev. Lett. 95, 187402 (2005).

    Article  Google Scholar 

  27. Wu, X., Stengel, M., Rabe, K. M. & Vanderbilt, D. Predicting polarization and nonlinear dielectric response of arbitrary perovskite superlattice sequences. Phys. Rev. Lett. 101, 087601 (2008).

    Article  Google Scholar 

  28. Seriani, N., Jin, Z., Pompe, W. & Colombi Ciacchi, L. Density functional theory study of platinum oxides: From infinite crystals to nanoscopic particles. Phys. Rev. B 76, 155421 (2007).

    Article  Google Scholar 

  29. Saad, M. M. et al. Intrinsic dielectric response in ferroelectric nano-capacitors. J. Phys. Condens. Matter 16, L451–L456 (2004).

    Article  CAS  Google Scholar 

  30. Tilley, D. R. & Zeks, B. Landau theory of phase transitions in thick films. Solid State Commun. 49, 823–827 (1984).

    Article  Google Scholar 

  31. Ghosez, P. & Rabe, K. M. Microscopic model of ferroelectricity in stress-free PbTiO3 ultrathin films. Appl. Phys. Lett. 76, 2767–2769 (2000).

    Article  CAS  Google Scholar 

  32. Giustino, F. & Pasquarello, A. Theory of atomic-scale dielectric permittivity at insulator interfaces. Phys. Rev. B 71, 144104 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Energy SciDac programme on ‘Quantum simulations of materials and nanostructures’, grant number DE-FC02-06ER25794 (M.S. and N.A.S.), and by ONR grant N00014-05-1-0054 (D.V.). Calculations were carried out at the San Diego Supercomputer Center and at the National Center for Supercomputer Applications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola A. Spaldin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stengel, M., Vanderbilt, D. & Spaldin, N. Enhancement of ferroelectricity at metal–oxide interfaces. Nature Mater 8, 392–397 (2009). https://doi.org/10.1038/nmat2429

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2429

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing