Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Zero-field optical manipulation of magnetic ions in semiconductors

An Erratum to this article was published on 21 February 2008

Abstract

Controlling and monitoring individual spins is desirable for building spin-based devices, as well as implementing quantum information processing schemes. As with trapped ions in cold gases, magnetic ions trapped on a semiconductor lattice have uniform properties and relatively long spin lifetimes. Furthermore, diluted magnetic moments in semiconductors can be strongly coupled to the surrounding host, permitting optical or electrical spin manipulation. Here we describe the zero-field optical manipulation of a few hundred manganese ions in a single gallium arsenide quantum well. Optically created mobile electron spins dynamically generate an energy splitting of the ion spins and enable magnetic moment orientation solely by changing either photon helicity or energy. These polarized manganese spins precess in a transverse field, enabling measurements of the spin lifetimes. As the magnetic ion concentration is reduced and the manganese spin lifetime increases, coherent optical control and readout of single manganese spins in gallium arsenide should be possible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical spectra of magnetic ions in the QW and DES.
Figure 2: DES of exciton spins in the QW.
Figure 5: Power and temperature dependence of DES and lifetime of Mn ion spins.
Figure 3: Laser-energy dependence of the DES.
Figure 4: Spin dynamics of Mn ions in GaAs QWs.

Similar content being viewed by others

References

  1. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    CAS  Google Scholar 

  2. Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998).

    Article  CAS  Google Scholar 

  3. Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217 (2007).

    Article  CAS  Google Scholar 

  4. Jelezko, F. et al. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev. Lett. 93, 130501 (2004).

    Article  CAS  Google Scholar 

  5. Hanson, R., Gywat, O. & Awschalom, D. D. Room-temperature manipulation and decoherence of a single spin in diamond. Phys. Rev. B 74, 161203 (2006).

    Article  Google Scholar 

  6. Childress, L. et al. Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314, 281–285 (2006).

    Article  CAS  Google Scholar 

  7. Awschalom, D. D. & Samarth, N. Spin dynamics and quantum transport in magnetic semiconductor quantum structures. J. Magn. Magn. Mater. 200, 130–147 (1999).

    Article  CAS  Google Scholar 

  8. Besombes, L. et al. Probing the spin state of a single magnetic ion in an individual quantum dot. Phys. Rev. Lett. 93, 207403 (2004).

    Article  CAS  Google Scholar 

  9. Leger, Y., Besombes, L., Fernandez-Rossier, J., Maingault, L. & Mariette, H. Electrical control of a single Mn atom in a quantum dot. Phys. Rev. Lett. 97, 107401 (2006).

    Article  CAS  Google Scholar 

  10. Crooker, S. A., Awschalom, D. D., Baumberg, J. J., Flack, F. & Samarth, N. Optical spin resonance and transverse spin relaxation in magnetic semiconductor quantum wells. Phys. Rev. B 56, 7574–7588 (1997).

    Article  CAS  Google Scholar 

  11. Furdyna, J. K. Diluted magnetic semiconductors. J. Appl. Phys. 64, R29–R64 (1988).

    Article  CAS  Google Scholar 

  12. Chapman, R. A. & Hutchinson, W. G. Photoexcitation and photoionization of neutral manganese acceptors in gallium arsenide. Phys. Rev. Lett. 18, 443–445 (1967).

    Article  Google Scholar 

  13. Schairer, W. & Schmidt, M. Strongly quenched deformation potentials of the Mn acceptor in GaAs. Phys. Rev. B 10, 2501–2506 (1974).

    Article  CAS  Google Scholar 

  14. Tang, J.-M., Levy, J. & Flatté, M. E. All-electrical control of single ion spins in a semiconductor. Phys. Rev. Lett. 97, 106803 (2006).

    Article  Google Scholar 

  15. Krenn, H., Zawadzki, W. & Bauer, G. Optically induced magnetization in a dilute magnetic semiconductor: Hg1−xMnxTe. Phys. Rev. Lett. 55, 1510–1513 (1985).

    Article  CAS  Google Scholar 

  16. Lampel, G. Nuclear dynamic polarization by optical electronic saturation and optical pumping in semiconductors. Phys. Rev. Lett. 20, 491–493 (1968).

    Article  CAS  Google Scholar 

  17. Tang, J.-M. & Flatté, M. E. Multiband tight-binding model of local magnetism in Ga1−xMnxAs. Phys. Rev. Lett. 92, 047201 (2004).

    Article  Google Scholar 

  18. Yakunin, A. M. et al. Spatial structure of an individual Mn acceptor in GaAs. Phys. Rev. Lett. 92, 216806 (2004).

    Article  CAS  Google Scholar 

  19. Kitchen, D., Richardella, A., Tang, J.-M., Flatté, M. E. & Yazdani, A. Atom-by-atom substitution of Mn in GaAs and visualization of their hole-mediated interactions. Nature 442, 436–439 (2006).

    Article  CAS  Google Scholar 

  20. Myers, R. C., Poggio, M., Stern, N. P., Gossard, A. C. & Awschalom, D. D. Antiferromagnetic sd exchange coupling in GaMnAs. Phys. Rev. Lett. 95, 017204 (2005).

    Article  CAS  Google Scholar 

  21. Poggio, M., Myers, R. C., Stern, N. P., Gossard, A. C. & Awschalom, D. D. Structural, electrical, and magneto-optical characterization of paramagnetic GaMnAs quantum wells. Phys. Rev. B 72, 235313 (2005).

    Article  Google Scholar 

  22. Schneider, J., Kaufmann, U., Wilkening, W., Baeumler, M. & Köhl, F. Electronic structure of the neutral manganese acceptor in gallium arsenide. Phys. Rev. Lett. 59, 240–243 (1987).

    Article  CAS  Google Scholar 

  23. Frey, T., Maier, M., Schneider, J. & Gehrke, M. Paramagnetism of the manganese acceptor in gallium arsenide. J. Phys. C 21, 5539–5545 (1988).

    Article  CAS  Google Scholar 

  24. Plot, B., Deveaud, B., Lambert, B., Chomette, A. & Regreny, A. Manganese luminescence in GaAs/GaAlAs superlattices. J. Phys. C 19, 4279–4289 (1986).

    Article  CAS  Google Scholar 

  25. Yu, P. W. & Park, Y. S. Photoluminescence in Mn-implanted GaAs—an explanation on the 1.40-eV emission. J. Appl. Phys. 50, 1097–1103 (1979).

    Article  CAS  Google Scholar 

  26. Bantien, F. & Weber, J. Properties of the optical transitions within the Mn acceptor in AlxGa1−xAs. Phys. Rev. B 37, 10111–10117 (1988).

    Article  CAS  Google Scholar 

  27. Averkiev, N. S., Gutkin, A. A., Osipov, E. B. & Reshchikov, M. A. Effect of the exchange interaction of a hole with 3d electrons on the properties of a deep Mn acceptor in gallium arsenide. Sov. Phys. Solid State 30, 438 (1988).

    Google Scholar 

  28. Karlik, I. Y. et al. Magnetization of holes at acceptors and the polarization of the hot photoluminescence in GaAs:Mn crystals. Sov. Phys. Solid State 24, 2022 (1982).

    Google Scholar 

  29. Kim, Y., Shon, Y., Takamasu, T. & Yokoi, H. Deep-level optical transitions of (Ga,Mn)As in high magnetic fields. Phys. Rev. B 71, 073308 (2005).

    Article  Google Scholar 

  30. Sapega, V. F. et al. Hole spin polarization in GaAs:Mn/AlAs multiple quantum wells. Phys. Rev. B 75, 113310 (2007).

    Article  Google Scholar 

  31. Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961).

    Article  CAS  Google Scholar 

  32. Stern, N. P., Myers, R. C., Poggio, M., Gossard, A. C. & Awschalom, D. D. Confinement engineering of sd exchange interactions in Ga1−xMnxAs/AlyGa1−yAs quantum wells. Phys. Rev. B 75, 045329 (2007).

    Article  Google Scholar 

  33. Damen, T. C., Via, L., Cunningham, J. E., Shah, J. & Sham, L. J. Subpicosecond spin relaxation dynamics of excitons and free carriers in GaAs quantum wells. Phys. Rev. Lett. 67, 3432–3435 (1991).

    Article  CAS  Google Scholar 

  34. Krenn, H., Kaltenegger, K., Dietl, T., Spałek, J. & Bauer, G. Photoinduced magnetization in dilute magnetic (semimagnetic) semiconductors. Phys. Rev. B 39, 10918–10934 (1989).

    Article  CAS  Google Scholar 

  35. Meier, F. & Zakharchenya, B. P. (eds) Optical Orientation (Elsevier, Amsterdam, 1984).

  36. Marie, X. et al. Hole spin quantum beats in quantum-well structures. Phys. Rev. B 60, 5811–5817 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the ONR, the AFOSR and the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Awschalom.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myers, R., Mikkelsen, M., Tang, JM. et al. Zero-field optical manipulation of magnetic ions in semiconductors. Nature Mater 7, 203–208 (2008). https://doi.org/10.1038/nmat2123

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2123

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing