Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Wrap–bake–peel process for nanostructural transformation from β-FeOOH nanorods to biocompatible iron oxide nanocapsules

Abstract

The thermal treatment of nanostructured materials to improve their properties generally results in undesirable aggregation and sintering. Here, we report on a novel wrap–bake–peel process, which involves silica coating, heat treatment and finally the removal of the silica layer, to transform the phases and structures of nanostructured materials while preserving their nanostructural characteristics. We demonstrate, as a proof-of-concept, the fabrication of water-dispersible and biocompatible hollow iron oxide nanocapsules by applying this wrap–bake–peel process to spindle-shaped akagenite (β-FeOOH) nanoparticles. Depending on the heat treatment conditions, hollow nanocapsules of either haematite or magnetite were produced. The synthesized water-dispersible magnetite nanocapsules were successfully used not only as a drug-delivery vehicle, but also as a T2 magnetic resonance imaging contrast agent. The current process is generally applicable, and was used to transform heterostructured FePt nanoparticles to high-temperature face-centred-tetragonal-phase FePt alloy nanocrystals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: TEM images of each product.
Figure 3: T2-weighted magnetic resonance images of the magnetite nanocapsules.
Figure 4: Uptake of free DOX and PEG–MNC–DOX in cancer cells and cytotoxicity data.
Figure 5: TEM images of each product.

Similar content being viewed by others

References

  1. Kostorz, G. (ed.) Phase Transformations in Materials (Wiley-VCH, Weinheim, 2001).

  2. Burstein, G. T., Hutchings, I. M. & Sasaki, K. Electrochemically induced annealing of stainless-steel surfaces. Nature 407, 885–887 (2000).

    Article  CAS  Google Scholar 

  3. Sundaram, S. K. & Mazur, E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nature Mater. 1, 217–224 (2002).

    Article  CAS  Google Scholar 

  4. Jacobs, K., Zaziski, D., Scher, E. C., Herhold, A. B. & Alivisatos, A. P. Activation volumes for solid-solid transformations in nanocrystals. Science 293, 1803–1806 (2001).

    Article  CAS  Google Scholar 

  5. Sun, S., Murray, C. B., Weller, D., Folks, L. & Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989–1992 (2000).

    Article  CAS  Google Scholar 

  6. Budai, J. D. et al. Controlling the size, structure and orientation of semiconductor nanocrystals using metastable phase recrystallization. Nature 390, 384–386 (1997).

    Article  CAS  Google Scholar 

  7. Zeng, H., Li, J., Liu, J. P., Wang, Z. L. & Sun, S. H. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 420, 395–398 (2002).

    Article  CAS  Google Scholar 

  8. Yin, Y., Erdonmez, C., Aloni, S. & Alivisatos, A. P. Faceting of nanocrystals during chemical transformation: From solid silver spheres to hollow gold octahedra. J. Am. Chem. Soc. 128, 12671–12673 (2006).

    Article  CAS  Google Scholar 

  9. Kim, D. et al. Synthesis of hollow iron nanoframes. J. Am. Chem. Soc. 129, 5812–5813 (2007).

    Article  CAS  Google Scholar 

  10. Liang, H.-P. et al. Pt hollow nanospheres: facile synthesis and enhanced electrocatalysts. Angew. Chem. Int. Edn 43, 1540–1543 (2004).

    Article  CAS  Google Scholar 

  11. Kim, S.-W., Kim, M., Lee, W. Y. & Hyeon, T. Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for suzuki coupling reactions. J. Am. Chem. Soc. 124, 7642–7643 (2002).

    Article  CAS  Google Scholar 

  12. Lou, X. W., Wang, Y., Yuan, C., Lee, J. Y. & Archer, L. A. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 18, 2325–2329 (2006).

    Article  CAS  Google Scholar 

  13. Yin, Y. et al. Formation of hollow nanocrystals through the nanoscale kirkendall effect. Science 304, 711–714 (2004).

    Article  CAS  Google Scholar 

  14. Gasparac, R., Kohli, P., Mota, M. O., Trofin, L. & Martin, C. R. Template synthesis of nano test tubes. Nano Lett. 4, 513–516 (2004).

    Article  CAS  Google Scholar 

  15. Grosso, D., Boissière, C. & Sanchez, C. Ultralow-dielectric-constant optical thin films built from magnesium oxyfluoride vesicle-like hollow nanoparticles. Nature Mater. 6, 572–575 (2007).

    Article  CAS  Google Scholar 

  16. Dhas, N. A. & Suslick, K. S. Sonochemical preparation of hollow nanospheres and hollow nanocrystals. J. Am. Chem. Soc. 127, 2368–2369 (2005).

    Article  CAS  Google Scholar 

  17. Yoon, S. B. et al. Fabrication of carbon capsules with hollow macroporous core/mesoporous shell structures. Adv. Mater. 14, 19–21 (2002).

    Article  CAS  Google Scholar 

  18. Chen, J., Xu, L., Li, W. & Gou, X. α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv. Mater. 17, 582–586 (2005).

    Article  CAS  Google Scholar 

  19. Shekhah, O., Ranke, W., Schüle, A., Kolios, G. & Schlögl, R. Styrene synthesis: High conversion over unpromoted iron oxide catalysts under practical working conditions. Angew. Chem. Int. Edn 42, 5760–5763 (2003).

    Article  CAS  Google Scholar 

  20. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J.-M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000).

    Article  CAS  Google Scholar 

  21. Weissleder, R., Kelly, K., Sun, E. Y., Shtatland, T. & Josephson, L. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nature Biotechnol. 23, 1418–1423 (2005).

    Article  CAS  Google Scholar 

  22. Bulte, J. W. M. & Kraitchman, D. L. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 17, 484–499 (2004).

    Article  CAS  Google Scholar 

  23. Xu, C. et al. Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. J. Am. Chem. Soc. 126, 9938–9939 (2004).

    Article  CAS  Google Scholar 

  24. Gu, H., Xu, K., Xu, C. & Xu, B. Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem. Commun. 941–949 (2006).

  25. Lee, I. S. et al. Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins. J. Am. Chem. Soc. 128, 10658–10659 (2006).

    Article  CAS  Google Scholar 

  26. Lee, J. H. et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nature Med. 13, 95–99 (2007).

    Article  CAS  Google Scholar 

  27. Son, S. J., Reichel, J., He, B., Schuchman, M. & Lee, S. B. Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery. J. Am. Chem. Soc. 127, 7316–7317 (2005).

    Article  CAS  Google Scholar 

  28. Jia, C.-J. et al. Single-crystalline iron oxide nanotubes. Angew. Chem. Int. Edn 44, 4328–4333 (2005).

    Article  CAS  Google Scholar 

  29. Liu, Z. et al. Single crystalline magnetite nanotubes. J. Am. Chem. Soc. 127, 6–7 (2005).

    Article  CAS  Google Scholar 

  30. Peng, S. & Sun, S. Synthesis and characterization of monodisperse hollow Fe3O4 nanoparticles. Angew. Chem. Int. Edn 46, 4155–4158 (2007).

    Article  CAS  Google Scholar 

  31. Bang, J. H. & Suslick, K. S. Sonochemical synthesis of nanosized hollow hematite. J. Am. Chem. Soc. 129, 2242–2243 (2007).

    Article  CAS  Google Scholar 

  32. Chen, M., Tang, B. & Nikles, D. E. Preparation of iron nanoparticles by reduction of acicular β-FeOOH particles. IEEE Trans. Magn. 34, 1141–1143 (1998).

    Article  CAS  Google Scholar 

  33. Graf, C., Vossen, D. L. J., Imhof, A. & van Blaaderen, A. A general method to coat colloidal particles with silica. Langmuir 19, 6693–6700 (2003).

    Article  CAS  Google Scholar 

  34. Steinhart, M., Wehrspohn, R. B., Gösele, U. & Wendorff, J. H. Nanotubes by template wetting: A modular assembly system. Angew. Chem. Int. Edn 43, 1334–1344 (2004).

    Article  CAS  Google Scholar 

  35. Bondioli, F., Ferrari, A. M., Leonelli, C. & Manfredini, T. Synthesis of Fe2O3/silica red inorganic inclusion pigments for ceramic applications. Mater. Res. Bull. 33, 723–729 (1998).

    Article  CAS  Google Scholar 

  36. Luo, Y., Lee, S. K., Hofmeister, H., Steinhart, M. & Gösele, U. Pt nanoshell tubes by template wetting. Nano Lett. 4, 143–147 (2004).

    Article  CAS  Google Scholar 

  37. da Silva, S. W. et al. Raman spectroscopy of cobalt ferrite nanocomposite in silica matrix prepared by sol–gel method. J. Non-Cryst. Solids 352, 1602–1606 (2006).

    Article  CAS  Google Scholar 

  38. Booser, D. J. & Hortobagyi, G. N. Anthracycline antibiotics in cancer therapy: focus on drug resistance. Drugs 47, 223–258 (1994).

    Article  CAS  Google Scholar 

  39. Geng, Y. et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nature Nanotechnol. 2, 249–255 (2007).

    Article  CAS  Google Scholar 

  40. Sun, S. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv. Mater. 18, 393–403 (2006).

    Article  CAS  Google Scholar 

  41. Lee, D. C., Mikulec, F. V., Pelaez, J. M., Koo, B. & Korgel, B. A. Synthesis and magnetic properties of silica-coated FePt nanocrystals. J. Phys. Chem. B 110, 11160–11166 (2006).

    Article  CAS  Google Scholar 

  42. Hyun, C., Lee, D. C., Korgel, B. A. & de Lozanne, A. Micromagnetic study of single-domain FePt nanocrystals overcoated with silica. Nanotechnology 18, 055704 (2007).

    Article  Google Scholar 

  43. Varanda, L. C. & Jafelicci, M. Self-assembled FePt nanocrystals with large coercivity: reduction of the fcc-to-L1(0) ordering temperature. J. Am. Chem. Soc. 128, 11062–11066 (2006).

    Article  CAS  Google Scholar 

  44. Kang, S., Harrell, J. W. & Nikles, D. E. Reduction of the fcc to L1(0) ordering temperature for self-assembled FePt nanoparticles containing Ag. Nano Lett. 2, 1033–1036 (2002).

    Article  CAS  Google Scholar 

  45. Dai, Z. R., Sun, S. H. & Wang, Z. L. Phase transformation, coalescence, and twinning of monodisperse FePt nanocrystals. Nano Lett. 1, 443–447 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

T.H. acknowledges financial support by the Korean Ministry of Science and Technology through the National Creative Research Initiative Program of the Korea Science and Engineering Foundation (KOSEF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taeghwan Hyeon.

Supplementary information

Supplementary Information

Supplementary figures S1–S22 (PDF 4091 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piao, Y., Kim, J., Na, H. et al. Wrap–bake–peel process for nanostructural transformation from β-FeOOH nanorods to biocompatible iron oxide nanocapsules. Nature Mater 7, 242–247 (2008). https://doi.org/10.1038/nmat2118

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2118

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing