Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Morphological clues to wet granular pile stability

Abstract

When a granular material such as sand is mixed with a certain amount of liquid, the surface tension of the latter bestows considerable stiffness to the material, which enables, for example, sand castles to be sculpted1,2,3,4. The geometry of the liquid interface within the granular pile is of extraordinary complexity and strongly varies with the liquid content5,6,7. Surprisingly, the mechanical properties of the pile are largely independent of the amount of liquid2,8,9,10,11,12,13 over a wide range14,15,16. We resolve this puzzle with the help of X-ray microtomography, showing that the remarkable insensitivity of the mechanical properties to the liquid content is due to the particular organization of the liquid in the pile into open structures. For spherical grains, a simple geometric rule is established, which relates the macroscopic properties to the internal liquid morphologies. We present evidence that this concept is also valid for systems with non-spherical grains. Hence, our results provide new insight towards understanding the complex physics of a large variety of wet granular systems including land slides, as well as mixing and agglomeration problems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stiffness of a wet granular pile in comparison with the reorganization of liquid structures.
Figure 2: Liquid morphologies in a wet granular pile.
Figure 3: Normalized Laplace pressure within liquid structures in a wet pile of glass beads.
Figure 4: Stiffness of a wet granulate consisting of non-spherical grains.

Similar content being viewed by others

References

  1. Hornbaker, D. J., Albert, R., Albert, I., Barabási, A.-L. & Schiffer, P. What keeps sandcastles standing? Nature 387, 765 (1997).

    Article  CAS  Google Scholar 

  2. Nowak, S., Samadani, A. & Kudrolli, A. Maximum angle of stability of a wet granular pile. Nature Phys. 1, 50–52 (2005).

    Article  CAS  Google Scholar 

  3. Schiffer, P. A. Bridge to sandpile stability. Nature Phys. 1, 21–22 (2005).

    Article  CAS  Google Scholar 

  4. Lu, N., Wu, B. & Tan, C. P. Tensile strength characteristics of unsaturated sands. J. Geotech. Geoenviron. Eng. 133, 144–154 (2007).

    Article  Google Scholar 

  5. Iveson, S. M., Litster, J. D., Hapgood, K. & Ennis, B. J. Nucleation, growth and breakage phenomena in agitated wet granulation processes: A review. Powder Tech. 117, 3–39 (2001).

    Article  CAS  Google Scholar 

  6. Herminghaus, S. Dynamics of wet granular matter. Adv. Phys. 54, 221–261 (2005).

    Article  Google Scholar 

  7. Mitarai, N. & Nori, F. Wet granular materials. Adv. Phys. 55, 1–45 (2006).

    Article  CAS  Google Scholar 

  8. Rumpf, H. Agglomeration (AIME, Interscience, New York, 1962).

    Google Scholar 

  9. Gröger, T., Tüzün, U. & Heyes, D. M. Modelling and measuring of cohesion in wet granular materials. Powder Tech. 133, 203–215 (2003).

    Article  Google Scholar 

  10. Richefeu, V., El Youssoufi, M. S. & Radjaï, F. Shear strength properties of wet granular materials. Phys. Rev. E 73, 051304 (2006).

    Article  Google Scholar 

  11. Soulié, F., El Youssoufi, M. S., Cherblanc, F. & Saix, C. Capillary cohesion and mechanical strength of polydisperse granular materials. Eur. Phys. J. E 21, 349–357 (2006).

    Article  Google Scholar 

  12. Bocquet, L., Charlaix, É. & Restagno, F. Physics of humid granular media. C. R. Physique 3, 207–215 (2002).

    Article  CAS  Google Scholar 

  13. Pierrat, P. & Caram, H. S. Tensile strength of wet granular materials. Powder Tech. 91, 83–93 (1997).

    Article  CAS  Google Scholar 

  14. Fournier, Z. et al. Mechanical properties of wet granular materials. J. Phys. Condens. Matter 17, S477–S502 (2005).

    Article  CAS  Google Scholar 

  15. Scheel, M., Geromichalos, D. & Herminghaus, S. Wet granular matter under vertical agitation. J. Phys. Condens. Matter 16, S4213–S4218 (2004).

    Article  CAS  Google Scholar 

  16. Kohonen, M. M., Geromichalos, D., Scheel, M., Schier, C. & Herminghaus, S. On capillary bridges in wet granular materials. Physica A 339, 7–15 (2004).

    Article  Google Scholar 

  17. Tegzes, P., Vicsek, T. & Schiffer, P. Avalanche dynamics in wet granular material. Phys. Rev. Lett. 89, 094301 (2002).

    Article  CAS  Google Scholar 

  18. Samadani, A. & Kudrolli, A. Angle of repose and segregation in cohesive granular matter. Phys. Rev. Lett. 64, 051301 (2001).

    CAS  Google Scholar 

  19. Halsey, T. C. & Levine, A. J. Critical angle of wet sandpile. Phys. Rev. Lett. 80, 3141–3144 (1998).

    Article  CAS  Google Scholar 

  20. Seemann, R., Mönch, W. & Herminghaus, S. Liquid flow in wetting layers on rough substrates. Europhys. Lett. 55, 698–704 (2001).

    Article  CAS  Google Scholar 

  21. Brakke, K. The surface evolver and the stability of liquid surfaces. Phil. Trans. R. Soc. A 354, 2143–2157 (1996).

    Article  Google Scholar 

  22. Geromichalos, D. et al. in Contact Angle, Wettability and Adhesion Vol. 3 (ed. Mittal, K. L.) (Diversified Enterprises, Claremont, 2003).

    Google Scholar 

  23. Geromichalos, D., Mugele, F. & Herminghaus, S. Nonlocal dynamics of spontaneous imbibition fronts. Phys. Rev. Lett. 89, 104503 (2002).

    Article  Google Scholar 

  24. Willett, C. D., Adams, M. J., Johnson, S. A. & Seville, J. P. K. Capillary bridges between two spherical bodies. Langmuir 16, 9396–9405 (2000).

    Article  CAS  Google Scholar 

  25. Fisher, R. A. On the capillary forces in an ideal soil; correction of formulae given by W. B. Haines. J. Agric. Sci. 16, 492–505 (1926).

    Article  CAS  Google Scholar 

  26. Donev, A. et al. Improving the density of jammed disordered packings using ellipsoids. Science 303, 990–993 (2004).

    Article  CAS  Google Scholar 

  27. Di Michiel, M. et al. Fast microtomography using high energy synchrotron radiation. Rev. Sci. Instr. 76, 043702 (2005).

    Article  Google Scholar 

  28. Averdunk, H. & Sheppard, A. The Mango 3D image analysis toolkit. http://xct.anu.edu.au/mango (2007).

  29. Frangakis, A. S. & Hegerl, R. Noise reduction in electron tomographic reconstructions using nonlinear anisotropic diffusion. J. Struct. Biol. 135, 239–250 (2001).

    Article  CAS  Google Scholar 

  30. Sheppard, A. P., Sok, R. M. & Averdunk, H. Techniques for image enhancement and segmentation of tomographic images of porous materials. Physica A 339, 145–151 (2004).

    Article  Google Scholar 

  31. Sethian, J. A. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Materials Science (Cambridge Univ. Press, Cambridge, 1999).

    Google Scholar 

Download references

Acknowledgements

The authors thank K. Mecke and K. Jacobs for valuable discussions. Support from the European Synchrotron Radiation Facility is gratefully acknowledged. We appreciate financial support from the DFG under grant Me1361/9 and within the SFB 755. The authors are indebted to Z. Khan and F. v. Bussel for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Experiments were carried out by M.S., R.S., M.DM. and S.H.; theory is by M.B. and S.H.; data analysis was done by M.S., R.S. and M.B.; numerical algorithms and implementation are by A.S. and B.B.

Corresponding author

Correspondence to S. Herminghaus.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheel, M., Seemann, R., Brinkmann, M. et al. Morphological clues to wet granular pile stability. Nature Mater 7, 189–193 (2008). https://doi.org/10.1038/nmat2117

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2117

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing