Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Giant spin Hall effect in perpendicularly spin-polarized FePt/Au devices

Abstract

Conversion of charge current into pure spin current and vice versa in non-magnetic semiconductors1,2,3,4,5 or metals6,7,8, which are called the direct and inverse spin Hall effects9,10,11,12,13,14,15,16 (SHEs), provide a new functionality of materials for future spin-electronic architectures17. Thus, the realization of a large SHE in a device with a simple and practical geometry is a crucial issue for its applications. Here, we present a multi-terminal device with a Au Hall cross and an FePt perpendicular spin injector to detect giant direct and inverse SHEs at room temperature. Perpendicularly magnetized FePt injects or detects perpendicularly polarized spin current without magnetic field, enabling the unambiguous identification of SHEs. The unprecedentedly large spin Hall resistance of up to 2.9 mΩ is attributed to the large spin Hall angle in Au through the skew scattering mechanism and the highly efficient spin injection due to the well-matched spin resistances of the chosen materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ISHE.
Figure 2: Temperature and distance dependence of ISHE.
Figure 3: DSHE.

Similar content being viewed by others

References

  1. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004).

    Article  CAS  Google Scholar 

  2. Wunderlich, J., Kaestner, B., Sinova, J. & Jungwirth, T. Experimental observation of the spin-Hall effect in a two-dimensional spin–orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005).

    Article  CAS  Google Scholar 

  3. Sih, V. et al. Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional electron gases. Nature Phys. 1, 31–35 (2005).

    Article  CAS  Google Scholar 

  4. Zhao, H., Loren, E. J., van Driel, H. M. & Smirl, A. L. Coherent control of Hall charge and spin currents. Phys. Rev. Lett. 96, 246601 (2006).

    Article  Google Scholar 

  5. Stern, N. P. et al. Current-induced polarization and the spin Hall effect at room temperature. Phys. Rev. Lett. 97, 126603 (2006).

    Article  CAS  Google Scholar 

  6. Valenzuela, S. O. & Tinkham, M. Direct electronic measurement of the spin Hall effect. Nature 442, 176–179 (2006).

    Article  CAS  Google Scholar 

  7. Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006).

    Article  Google Scholar 

  8. Kimura, T., Otani, Y., Sato, T., Takahashi, S. & Maekawa, S. Room-temperature reversible spin Hall effect. Phys. Rev. Lett. 98, 156601 (2007).

    Article  CAS  Google Scholar 

  9. Dyakonov, M. I. & Perel, V. I. Current-induced spin orientation of electrons in semiconductors. Phys. Lett. A 35, 459–460 (1971).

    Article  Google Scholar 

  10. Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999).

    Article  CAS  Google Scholar 

  11. Zhang, S. Spin Hall effect in the presence of spin diffusion. Phys. Rev. Lett. 85, 393–396 (2000).

    Article  CAS  Google Scholar 

  12. Murakami, S., Nagaosa, N. & Zhang, S. Dissipationless quantum spin current at room temperature. Science 301, 1348–1351 (2003).

    Article  CAS  Google Scholar 

  13. Sinova, J. et al. Universal intrinsic spin Hall effect. Phys. Rev. Lett. 92, 126603 (2004).

    Article  Google Scholar 

  14. Inoue, J., Bauer, G. E. W. & Molenkamp, L. W. Suppression of the persistent spin Hall current by defect scattering. Phys. Rev. B 70, 041303 (2004).

    Article  Google Scholar 

  15. Shchelushkin, R. V. & Brataas, A. Spin Hall effects in diffusive normal metals. Phys. Rev. B 71, 045123 (2005).

    Article  Google Scholar 

  16. Takahashi, S., Imamura, H. & Maekawa, S. in Concepts in Spin Electronics (ed. Maekawa, S.) (Oxford Univ. Press, Oxford, 2006).

    Google Scholar 

  17. Wolf, S. A. et al. Spintronics: A spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  CAS  Google Scholar 

  18. Chien, C. L. & Westgate, C. R. (eds) The Hall Effect and Its Applications (Plenum, New York, 1980).

  19. Kondo, J. Anomalous Hall effect and magnetoresistance of ferromagnetic metals. Prog. Theor. Phys. 27, 772–791 (1962).

    Article  CAS  Google Scholar 

  20. Takahashi, S. & Maekawa, S. Spin injection and detection in magnetic nanostructures. Phys. Rev. B 67, 052409 (2003).

    Article  Google Scholar 

  21. Kaiser, C., van Dijken, S., Yang, S.-H., Yang, H. & Parkin, S. S. P. Role of tunneling matrix elements in determining the magnitude of the tunneling spin polarization of 3d transition metal ferromagnetic alloys. Phys. Rev. Lett. 94, 247203 (2005).

    Article  Google Scholar 

  22. Mitani, S., Tsukamoto, K., Seki, T., Shima, T. & Takanashi, K. Fabrication and characterization of L10-ordered FePt/AlO/FeCo magnetic tunnel junctions. IEEE Trans. Magn. 41, 2606–2608 (2005).

    Article  CAS  Google Scholar 

  23. Seki, T., Mitani, S., Yakushiji, K. & Takanashi, K. Spin-polarized current-induced magnetization reversal in perpendicularly magnetized L10-FePt layers. Appl. Phys. Lett. 88, 172504 (2006).

    Article  Google Scholar 

  24. Jedema, F. J., Filip, A. T. & van Wees, B. J. Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature 410, 345–348 (2001).

    Article  CAS  Google Scholar 

  25. Jedema, F. J., Heersche, H. B., Filip, A. T., Baselmans, J. J. A. & van Wees, B. J. Electrical detection of spin precession in a metallic mesoscopic spin valve. Nature 416, 713–716 (2002).

    Article  CAS  Google Scholar 

  26. Seitz, F. & Turnbull, D. (eds) Solid State Physics (Academic, New York, 1957).

  27. Valenzuela, S. O. & Tinkham, M. Spin-polarized tunneling in room-temperature mesoscopic spin valves. Appl. Phys. Lett. 85, 5914–5916 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Industrial Technology Research Grant Program in 2005 from NEDO. The device fabrication was partly carried out at the Advanced Research Center of Metallic Glasses, IMR, Tohoku University. The authors thank G. E. W. Bauer, E. Saitoh and M. Mizuguchi for their helpful comments and critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

T.S. played the primary role in carrying out the sample preparation and the measurement. Y.H. assisted in the sample preparation and the measurement. The third author, S.T. and H.I. contributed to the theoretical modelling for the interpretation and the data analyses. All of the authors contributed to the physical understanding, the data analysis and the preparation of the manuscript.

Corresponding author

Correspondence to Takeshi Seki.

Supplementary information

Supplementary Information

Supplementary information and figures S1-S2 (PDF 475 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seki, T., Hasegawa, Y., Mitani, S. et al. Giant spin Hall effect in perpendicularly spin-polarized FePt/Au devices. Nature Mater 7, 125–129 (2008). https://doi.org/10.1038/nmat2098

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2098

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing