Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tensile ductility and necking of metallic glass

Abstract

Metallic glasses have a very high strength, hardness and elastic limit. However, they rarely show tensile ductility at room temperature and are considered quasi-brittle materials1,2. Although these amorphous metals are capable of shear flow, severe plastic instability sets in at the onset of plastic deformation, which seems to be exclusively localized in extremely narrow shear bands 10 nm in thickness3,4,5,6,7,8,9,10,11,12,13. Using in situ tensile tests in a transmission electron microscope, we demonstrate radically different deformation behaviour for monolithic metallic-glass samples with dimensions of the order of 100 nm. Large tensile ductility in the range of 23–45% was observed, including significant uniform elongation and extensive necking or stable growth of the shear offset. This large plasticity in small-volume metallic-glass samples did not result from the branching/deflection of shear bands or nanocrystallization. These observations suggest that metallic glasses can plastically deform in a manner similar to their crystalline counterparts, via homogeneous and inhomogeneous flow without catastrophic failure. The sample-size effect discovered has implications for the application of metallic glasses in thin films and micro-devices, as well as for understanding the fundamental mechanical response of amorphous metals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Small-volume metallic-glass samples for the in situ tensile straining experiment in the TEM.
Figure 2: Sample I at various stages of tensile elongation during the in situ TEM experiment.
Figure 3: The necking process in sample II observed during the in situ tensile testing in the TEM.
Figure 4: TEM bright-field images and corresponding electron diffraction patterns (insets) of the in situ tested samples at various stages of straining.

Similar content being viewed by others

References

  1. Schuh, C. A., Hufnagel, T. C. & Ramamurty, U. Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067–4109 (2007).

    Article  CAS  Google Scholar 

  2. Sergueeva, A. V., Mara, N. A., Branagan, D. J. & Mukherjee, A. K. Strain rate effect on metallic glass ductility. Scr. Mater. 50, 1303–1307 (2004).

    Article  CAS  Google Scholar 

  3. Johnson, W. L. Bulk glass-forming metallic alloys: Science and technology. Mater. Res. Soc. Bull. 24, 42–56 (1999).

    Article  CAS  Google Scholar 

  4. Pampillo, C. A. & Chen, H. S. Compressive plastic deformation of a bulk metallic glass. Mater. Sci. Eng. 13, 181–188 (1974).

    Article  CAS  Google Scholar 

  5. Davis, L. A. & Yeow, Y. T. Flow and fracture of a Ni–Fe metallic glass. J. Mater. Sci. 15, 230–236 (1980).

    Article  CAS  Google Scholar 

  6. Liu, C. T. et al. Test environments and mechanical properties of Zr-base bulk amorphous alloys. Metall. Mater. Trans. A 29, 1811–1820 (1998).

    Article  Google Scholar 

  7. Lewandowski, J. J. & Lowhaphandu, P. Effects of hydrostatic pressure on the flow and fracture of a bulk amorphous metal. Phil. Mag. A 82, 3427–3441 (2002).

    Article  CAS  Google Scholar 

  8. Yavari, A. R., Lewandowski, J. J. & Eckert, J. Mechanical properties of bulk metallic glasses. Mater. Res. Soc. Bull. (August 2007).

  9. Hays, C. C., Kim, C. P. & Johnson, W. L. Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901–2904 (2000).

    Article  CAS  Google Scholar 

  10. Zhang, Z. F., Eckert, J. & Schultz, L. Fatigue and fracture behavior of bulk metallic glass. Metall. Mater. Trans. A 35, 3489–3498 (2004).

    Article  Google Scholar 

  11. Inoue, A., Zhang, W., Tsurui, T., Yavari, A. R. & Greer, A. L. Unusual room-temperature compressive plasticity in nanocrystal-toughened bulk copper-zirconium glass. Phil. Mag. Lett. 85, 221–229 (2005).

    Article  CAS  Google Scholar 

  12. Zhang, Z. F., Zhang, H., Pan, X. F., Das, J. & Eckert, J. Effect of aspect ratio on the compressive deformation and fracture behaviour of Zr-based bulk metallic glass. Phil. Mag. Lett. 85, 513–524 (2005).

    Article  CAS  Google Scholar 

  13. Bei, H., Xie, S. & George, E. P. Softening caused by profuse shear banding in a bulk metallic glass. Phys. Rev. Lett. 96, 105503 (2006).

    Article  CAS  Google Scholar 

  14. Volkert, C. A., Cordero, N., Lilleodden, E. T., Donohue, A. & Spaepen, F. in Size Effects in the Deformation of Materials—Experiments and Modeling (eds Lilleodden, E., Besser, P., Levine, L. & Needleman, A.) (Mater. Res. Soc. Symp. Proc., Vol. 976E, Materials Research Society, Warrendale, 2007).

    Google Scholar 

  15. Spaepen, F. in Processing-Structure-Mechanical Property Relations in Composite Materials (eds Thilly, L., Moody, N. R., Misra, A., Anderson, P. M. & Kumar, M.) (Mater. Res. Soc. Symp. Proc., Vol. 977E, Materials Research Society, Warrendale, 2007).

    Google Scholar 

  16. Zheng, Q., Cheng, S., Strader, J. H., Ma, E. & Xu, J. Critical size and strength of the best bulk metallic glass former in the Mg–Cu–Gd ternary system. Scr. Metall. 56, 161–164 (2007).

    Article  CAS  Google Scholar 

  17. Uchic, M. D., Dimiduk, D. M., Florando, J. N. & Nix, W. D. Sample dimensions influence strength and crystal plasticity. Science 305, 986–989 (2004).

    Article  CAS  Google Scholar 

  18. Schroers, J. & Johnson, W. L. Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 (2004).

    Article  Google Scholar 

  19. Das, J. et al. “Work-hardenable” ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 (2005).

    Article  Google Scholar 

  20. Liu, Y. H. et al. Super plastic bulk metallic glasses at room temperature. Science 315, 1385–1388 (2007).

    Article  CAS  Google Scholar 

  21. Zhang, Y., Wang, W. H. & Greer, A. L. Making metallic glasses plastic by control of residual stress. Nature Mater. 5, 857–860 (2006).

    Article  CAS  Google Scholar 

  22. Bae, D. H., Lee, S. W., Kwon, J. W., Yi, S. & Park, J. S. Deformation behavior of Zr–Al–Cu–Ni–Sn metallic glasses. J. Mater. Res. 21, 1305 (2006).

    Article  CAS  Google Scholar 

  23. Li, Q. & Li, M. Molecular dynamics simulation of intrinsic and extrinsic mechanical properties of amorphous metals. Intermetallics 14, 1005–1010 (2006).

    Article  CAS  Google Scholar 

  24. Chen, M., Inoue, A., Zhang, W. & Sakurai, T. Extraordinary plasticity of ductile bulk metallic glasses. Phys. Rev. Lett. 96, 245502 (2006).

    Article  Google Scholar 

  25. Wu, F. F. et al. Multiplication of shear bands and ductility of metallic glass. Appl. Phys. Lett. 90, 191909 (2007).

    Article  Google Scholar 

  26. Conner, R. D., Johnson, W. L., Paton, N. E. & Nix, W. D. Shear bands and cracking of metallic glass plates in bending. J. Appl. Phys. 94, 904–901 (2003).

    Article  CAS  Google Scholar 

  27. Wright, T. W. & Ockendon, H. A scaling law for the effect of inertia on the formation of adiabatic shear bands. Int. J. Plasticity 12, 927–934 (1996).

    Article  Google Scholar 

  28. Argon, A. S. & Kou, H. Y. Plastic flow in a disordered bubble raft (an analog of a metallic glass). Mater. Sci. Eng. 39, 101–109 (1979).

    Article  Google Scholar 

  29. Spaepen, F. A microscopic mechanism for steady state in homogeneous flow in metallic glasses. Acta Metall. 25, 407–415 (1977).

    Article  CAS  Google Scholar 

  30. Ashby, M. F. & Greer, A. L. Metallic glasses as structural materials. Scr. Mater. 54, 321–326 (2006).

    Article  CAS  Google Scholar 

  31. Schuh, C. A., Lund, A. C. & Nieh, T. G. New regime of homogeneous flow in the deformation map of metallic glasses: Elevated temperature nanoindentation experiments and mechanistic modeling. Acta Mater. 52, 5879–5891 (2004).

    Article  CAS  Google Scholar 

  32. Wang, Y. M., Li, J., Hamza, A. V. & Barbee, T. W. Jr. Ductile crystalline-amorphous nanolaminates. Proc. Natl Acad. Sci. 104, 11155–11160 (2007).

    Article  CAS  Google Scholar 

  33. Hobbs, L. W. Introduction to Analytical Electron Microscopy Ch. 17 (Plenum, New York, 1979).

    Google Scholar 

  34. Hajlaoui, K. et al. Shear delocalization and crack blunting of a metallic glass containing nanoparticles: In-situ deformation in TEM analysis. Scr. Mater. 54, 1829–1834 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the National Nature Science Foundation of China (Grant Nos 50125103, 50671104 and 50625103) and the ‘Hundred of Talents Project’ of the Chinese Academy of Science (CAS) are gratefully acknowledged. The authors were also part of the MANS research team, supported in part by CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Sui.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, H., Yan, P., Wang, Y. et al. Tensile ductility and necking of metallic glass. Nature Mater 6, 735–739 (2007). https://doi.org/10.1038/nmat1984

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1984

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing