Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A large-area wireless power-transmission sheet using printed organic transistors and plastic MEMS switches

Abstract

The electronics fields face serious problems associated with electric power; these include the development of ecologically friendly power-generation systems and ultralow-power-consuming circuits. Moreover, there is a demand for developing new power-transmission methods in the imminent era of ambient electronics, in which a multitude of electronic devices such as sensor networks will be used in our daily life to enhance security, safety and convenience. We constructed a sheet-type wireless power-transmission system by using state-of-the-art printing technologies using advanced electronic functional inks. This became possible owing to recent progress in organic semiconductor technologies; the diversity of chemical syntheses and processes on organic materials has led to a new class of organic semiconductors, dielectric layers and metals with excellent electronic functionalities1,2,3,4,5. The new system directly drives electronic devices by transmitting power of the order of tens of watts without connectors, thereby providing an easy-to-use and reliable power source. As all of the components are manufactured on plastic films, it is easy to place the wireless power-transmission sheet over desks, floors, walls and any other location imaginable.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Configuration of the wireless power-transmission system and its components.
Figure 2: Diagram of circuit waveforms and characteristics of the contactless position-sensing system.
Figure 3: Characteristics of the wireless power-transmission system.
Figure 4: Demonstration of power transmission.

Similar content being viewed by others

References

  1. Katz, H. E. et al. A soluble and air-stable organic semiconductor with high electron mobility. Nature 404, 478–481 (2000).

    Article  CAS  Google Scholar 

  2. Chua, L. L. et al. General observation of n-type field-effect behaviour in organic semiconductors. Nature 434, 194–199 (2005).

    Article  CAS  Google Scholar 

  3. Bao, Z. N. Materials and fabrication needs for low-cost organic transistor circuits. Adv. Mater. 12, 227–230 (2000).

    Article  CAS  Google Scholar 

  4. Yoon, M. H., Facchetti, A. & Marks, T. J. σ-π molecular dielectric multilayers for low-voltage organic thin-film transistors. Proc. Natl Acad. Sci. USA 102, 4678–4682 (2005).

    Article  CAS  Google Scholar 

  5. Kobayashi, S. et al. Control of carrier density by self-assembled monolayers in organic field-effect transistors. Nature Mater. 3, 317–322 (2004).

    Article  CAS  Google Scholar 

  6. Briseno, A. L. et al. Patterning organic single-crystal transistor arrays. Nature 444, 913–917 (2006).

    Article  CAS  Google Scholar 

  7. Payne, M. M., Parkin, S. R., Anthony, J. E., Kuo, C. C. & Jackson, T. N. Organic field-effect transistors from solution-deposited functionalized acenes with mobilities as high as 1 cm2/Vs. J. Am. Chem. Soc. 127, 4986–4987 (2005).

    Article  CAS  Google Scholar 

  8. Loo, Y. L. et al. Soft, conformable electrical contacts for organic semiconductors: High-resolution plastic circuits by lamination. Proc. Natl Acad. Sci. USA 99, 10252–10256 (2002).

    Article  CAS  Google Scholar 

  9. Newman, C. R. et al. Introduction to organic thin film transistors and design of n-channel organic semiconductors. Chem. Mater. 16, 4436–4451 (2004).

    Article  CAS  Google Scholar 

  10. Crone, B. et al. Large-scale complementary integrated circuits based on organic transistors. Nature 403, 521–523 (2000).

    Article  CAS  Google Scholar 

  11. Meijer, E. J. et al. Solution-processed ambipolar organic field-effect transistors and inverters. Nature Mater. 2, 678–682 (2003).

    Article  CAS  Google Scholar 

  12. Klauk, H., Zschieschang, U., Pflaum, J. & Halik, M. Ultralow-power organic complementary circuits. Nature 445, 745–748 (2007).

    Article  CAS  Google Scholar 

  13. Dimitrakopoulos, C. D. & Malenfant, P. R. L. Organic thin film transistors for large area electronics. Adv. Mater. 14, 99–117 (2002).

    Article  CAS  Google Scholar 

  14. Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004).

    Article  CAS  Google Scholar 

  15. Mcculloch, I. Thin films: Rolling out organic electronics. Nature Mater. 4, 583–584 (2005).

    Article  CAS  Google Scholar 

  16. Sirringhaus, H. et al. High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123–2126 (2000).

    Article  CAS  Google Scholar 

  17. Garnier, F., Hajlaoui, R., Yassar, A. & Srivastava, P. All-polymer field-effect transistor realized by printing techniques. Science 265, 1684–1686 (1994).

    Article  CAS  Google Scholar 

  18. Suo, Z., Ma, E. Y., Gleskova, H. & Wagner, S. Mechanics of rollable and foldable film-on-foil electronics. Appl. Phys. Lett. 74, 1177–1179 (1999).

    Article  CAS  Google Scholar 

  19. Rogers, J. A. et al. Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc. Natl Acad. Sci. USA 98, 4835–4840 (2001).

    Article  CAS  Google Scholar 

  20. Gelinck, G. H. et al. Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nature Mater. 3, 106–110 (2004).

    Article  CAS  Google Scholar 

  21. Andersson, P. et al. Active matrix displays based on all-organic electrochemical smart pixels printed on paper. Adv. Mater. 14, 1460–1464 (2002).

    Article  CAS  Google Scholar 

  22. Klauk, H., Gundlach, D. J., Nichols, J. A. & Jackson, T. N. Pentacene organic thin-film transistors for circuit and display applications. IEEE Trans. Electron Devices 46, 1258–1263 (1999).

    Article  CAS  Google Scholar 

  23. Zhou, L. S. et al. All-organic active matrix flexible display. Appl. Phys. Lett. 88, 083502 (2006).

    Article  Google Scholar 

  24. Baude, P. F. et al. Pentacene-based radio-frequency identification circuitry. Appl. Phys. Lett. 82, 3964–3966 (2003).

    Article  CAS  Google Scholar 

  25. Rotzoll, R. et al. Radio frequency rectifiers based on organic thin-film transistors. Appl. Phys. Lett. 88, 123502 (2006).

    Article  Google Scholar 

  26. Huang, D., Liao, F., Molesa, S., Redinger, D. & Subramanian, V. Plastic-compatible low resistance printable gold nanoparticle conductors for flexible electronics. J. Electrochem. Soc. 150, G412–G417 (2003).

    Article  CAS  Google Scholar 

  27. Someya, T. et al. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl Acad. Sci. USA 101, 9966–9970 (2004).

    Article  CAS  Google Scholar 

  28. Someya, T. et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl Acad. Sci. USA 102, 12321–12325 (2005).

    Article  CAS  Google Scholar 

  29. Someya, T. et al. Integration of organic FETs with organic photodiodes for a large area, flexible, and lightweight sheet image scanners. IEEE Trans. Electron Devices 52, 2502–2511 (2005).

    Article  CAS  Google Scholar 

  30. Kato, Y. et al. Sheet-type braille displays by integrating organic field-effect transistors and polymeric actuators. IEEE Trans. Electron Devices 54, 202–209 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partially supported by Special Coordination Funds for Promoting and Technology, the Ministry of Education, Culture, Sports, Science and Technology and JST/CREST. We also thank Kyocera Chemical Cooperation for providing high-purity polyimide precursors (KEMITITE CT4112), Daisankasei for a high-purity parylene (diX-SR) and H. Kawaguchi and K. Hizu for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Someya.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information and figures S1-S7 (PDF 816 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sekitani, T., Takamiya, M., Noguchi, Y. et al. A large-area wireless power-transmission sheet using printed organic transistors and plastic MEMS switches. Nature Mater 6, 413–417 (2007). https://doi.org/10.1038/nmat1903

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1903

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing