Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Laser-shock compression of diamond and evidence of a negative-slope melting curve

Abstract

Diamond is the only known high-pressure structure of carbon. In spite of its fundamental and planetary importance, the stability domain of this strong covalent material is largely unknown. After decades of experimental efforts, evidence was obtained that the diamond–liquid melting line has a positive slope above the graphite–diamond–liquid triple point1. At higher pressure, theoretical studies have suggested that the melting curve of diamond should have a maximum2,3,4,5, owing to a loss of stability of the s p3 hybridization in the fluid phase. Accurate Hugoniot data of diamond exist up to 590 GPa (ref. 6). Higher-pressure measurements along the diamond Hugoniot have recently been achieved by laser shocks7,8, showing that diamond probably melts to a conducting fluid. We report here laser-shock Hugoniot data across the melting transition. The shocked diamond crystal begins to melt around 750 GPa. Furthermore, a negative volume discontinuity at melting is observed. This requires a negative melting slope and thus supports the existence of a maximum on the diamond melting curve. These melting data allow us to test various calculations of the phase diagram of carbon at very high pressure. Finally, the stability domain of the diamond crystal is now constrained in a relevant region for Uranus-like planetary interiors9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental configuration for the determination of the shock velocity in diamond.
Figure 2: Hugoniot measurements in the (Up,Us) plane.
Figure 3: Hugoniot measurements of diamond in the (density, pressure) plane.
Figure 4: Melting of diamond along its Hugoniot.

Similar content being viewed by others

References

  1. Bundy, F. P. et al. The pressure–temperature phase and transformation diagram for carbon updated through 1994. Carbon 34, 141–153 (1996).

    Article  CAS  Google Scholar 

  2. Grumbach, M. P. & Martin, R. M. Phase diagram of carbon at high pressures and temperatures. Phys. Rev. B 54, 15730–15741 (1996).

    Article  CAS  Google Scholar 

  3. Wang, X., Scandolo, S. & Car, R. Carbon phase diagram from ab initio molecular dynamics. Phys. Rev. Lett. 95, 18570 (2005).

    Google Scholar 

  4. Correa, A. F., Bonev, S. A. & Galli, G. Carbon under extreme conditions: Phase boundaries and electronic properties from first-principle theory. Proc. Natl Acad. Sci. 103, 1204–1208 (2006).

    Article  CAS  Google Scholar 

  5. Fried, L. E. & Howard, W. M. Explicit Gibbs free energy equation of state applied to the carbon phase diagram. Phys. Rev. B 61, 8734–8743 (2000).

    Article  CAS  Google Scholar 

  6. Pavlovskii, M. N. Shock compression of diamond. Sov. Phys. - Solid State 13, 741–742 (1971).

    Google Scholar 

  7. Bradley, D. K. et al. Shock compressing diamond to a conducting fluid. Phys. Rev. Lett. 93, 195506 (2004).

    Article  CAS  Google Scholar 

  8. Nagao, H. et al. Hugoniot measurement of diamond under laser shock compression up to 2 TPa. Phys. Plasma 13, 052705 (2006).

    Article  Google Scholar 

  9. Ross, M. The ice layer in Uranus and Neptune—diamonds in the sky? Nature 292, 435–436 (1981).

    Article  CAS  Google Scholar 

  10. Glosli, J. N. & Ree, F. H. The melting line of diamond determined via atomistic computer simulations. J. Chem. Phys. 110, 441–446 (1999).

    Article  CAS  Google Scholar 

  11. Ghiringhelli, L. M., Los, J. H., Meijer, E. J., Fasolino, A. & Frenkel, D. Modeling the phase diagram of carbon. Phys. Rev. Lett. 94, 145701 (2005).

    Article  Google Scholar 

  12. Barker, L. M. & Hollenbach, R. E. Laser interferometer for measuring high velocities of any reflecting surface. J. Appl. Phys. 43, 4669–4675 (1972).

    Article  Google Scholar 

  13. Edwards, D. F. & Philipp, H. R. in Handbook of Optical Constants of Solids 665–673 (Academic, New York, 1985).

    Book  Google Scholar 

  14. Celliers, P. et al. Line imaging velocimeter for shock diagnostics at the OMEGA laser facility. Rev. Sci. Instrum. 75, 4916–4929 (2004).

    Article  CAS  Google Scholar 

  15. Hicks, D. G. et al. Shock compression of quartz in the high-pressure fluid regime. Phys. Plasma 12, 082702 (2005).

    Article  Google Scholar 

  16. Enig, J. A complete E, P, V, T, S thermodynamic description of metals based on the P,U mirror-image approximation. J. Appl. Phys. 34, 746–754 (1962).

    Article  Google Scholar 

  17. Trunin, R. F. Shock compressibility of condensed materials in strong shock wave generated by underground nuclear explosions. Phys. Uspekhi 37, 1123–1145 (1994).

    Article  Google Scholar 

  18. Marsh, S. P. LASL Shock Hugoniot Data (Univ. California Press, Berkeley, 1980).

    Google Scholar 

  19. Johnson, J. D. in Shock Compression Condensed Matter—1997, CP429 (eds Scmidt S. C., Dandekar D. P. & Forbes J. W.) 27–30 (American Institute of Physics, New York, 1998).

    Google Scholar 

  20. Occelli, F., Loubeyre, P. & LeToullec, R. Properties of diamond under hydrostatic pressures up to 140 GPa. Nature Mater. 2, 151–153 (2003).

    Article  CAS  Google Scholar 

  21. Hubbard, W. B., Podolak, M. & Stevenson, D. J. in The Interior of Neptune (ed. Cruikshank, D. P.) 109–138 (Univ. of Arizona Press, Tucson, Arizona, 1995).

    Google Scholar 

  22. Benedetti, L. R. et al. Dissociation of CH4 at high pressures and temperatures: Diamond formation in giant planet interiors? Science 286, 100–102 (1999).

    Article  CAS  Google Scholar 

  23. Togaya, M. Pressure dependences of the melting temperature of graphite and the electrical resistivity of liquid carbon. Phys. Rev. Lett. 79, 2474–2477 (1997).

    Article  CAS  Google Scholar 

  24. Morris, J. R., Wang, C. Z. & Ho, K. M. Relationship between structure and conductivity in liquid carbon. Phys. Rev. B 52, 4138–4145 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the technical support of the LULI facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Loubeyre.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary table 1 (PDF 56 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brygoo, S., Henry, E., Loubeyre, P. et al. Laser-shock compression of diamond and evidence of a negative-slope melting curve. Nature Mater 6, 274–277 (2007). https://doi.org/10.1038/nmat1863

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1863

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing