Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhanced magnetic field sensitivity of spin-dependent transport in cluster-assembled metallic nanostructures

Abstract

The emerging field of spintronics explores the many possibilities offered by the prospect of using the spin of the electrons for fast, nanosized electronic devices. The effect of magnetization acting on a current is the essence of giant or tunnel magnetoresistance. Although such spintronics effects already find technological applications, much of the underlying physics remains to be explored. The aim of this article is to demonstrate the importance of spin mixing in metallic nanostructures. Here we show that magnetic clusters embedded in a metallic matrix exhibit a giant magnetic response of more than 500% at low temperature, using a recently developed thermoelectric measurement. This method eliminates the dominating resistivity component of the magnetic response and thus reveals an intrinsic spin-dependent process: the conduction-electron spin precession about the exchange field as the electron crosses the clusters, giving rise to a spin-mixing mechanism with strong field dependence. This effect appears sensibly only in the smallest clusters, that is, at the level of less than 100 atoms per cluster.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cluster-assembled material.
Figure 2: TGV experiment.
Figure 3: MTGV data.
Figure 4: Cluster size dependence.
Figure 5: Jitterbug spin mixing.

Similar content being viewed by others

References

  1. Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).

    Article  Google Scholar 

  2. Binash, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).

    Article  Google Scholar 

  3. Berkowitz, A. E. et al. Giant magnetoresistance in heterogeneous Cu-Co alloys. Phys. Rev. Lett. 68, 3745–3748 (1992).

    Article  Google Scholar 

  4. Parent, F. et al. Giant magnetoresistance in Co–Ag granular films prepared by low-energy cluster beam deposition. Phys. Rev. B 55, 3683–3687 (1997).

    Article  Google Scholar 

  5. Binns, C. et al. The behaviour of nanostructured magnetic materials produced by depositing gas-phase nanoparticles. J. Phys. D: Appl. Phys. 38, R357–R379 (2005).

    Article  Google Scholar 

  6. Parkin, S. S. P. et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nature Mater. 3, 862–867 (2004).

    Article  Google Scholar 

  7. Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nature Mater. 3, 868–871 (2004).

    Article  Google Scholar 

  8. Moodera, J. S., Kinder, L. R., Wong, T. M. & Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273–3276 (1995).

    Article  Google Scholar 

  9. Myers, E. B., Ralph, D. C., Katine, J. A., Louie, R. N. & Buhrman, R. A. Current-induced switching of domains in magnetic multilayer devices. Science 285, 867–870 (1999).

    Article  Google Scholar 

  10. Wegrowe, J.-E., Kelly, D., Jaccard, Y., Guittienne, Ph. & Ansermet, J.-Ph. Current-induced magnetization reversal in magnetic nanowires. Europhys. Lett. 45, 626–632 (1999).

    Article  Google Scholar 

  11. Urazhdin, S., Birge, N. O., Pratt, W. P. Jr & Bass, J. Current-driven magnetic excitations in permalloy-based multilayer nanopillars. Phys. Rev. Lett. 91, 146803 (2003).

    Article  Google Scholar 

  12. Lee, K.-J., Deac, A., Redon, O., Nozières, J.-P. & Dieny, B. Excitations of incoherent spin-waves due to spin-transfer torque. Nature Mater. 3, 877–881 (2004).

    Article  Google Scholar 

  13. Kiselev, S. I. et al. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380–383 (2003).

    Article  Google Scholar 

  14. Gravier, L., Serrano-Guisan, S., Reuse, F. & Ansermet, J.-Ph. Thermodynamic description of heat and spin transport in magnetic nanostructures. Phys. Rev. B 73, 024419 (2006).

    Article  Google Scholar 

  15. Hillenkamp, M., di Domenicantonio, G. & Félix, C. Monodispersed metal clusters in solid matrices: A new experimental setup. Rev. Sci. Instrum. 77, 25104–25108 (2006).

    Article  Google Scholar 

  16. Gregg, J. F., Allen, W., Thompson, S. M., Watson, M. L. & Gehring, G. A. Jitterbug spin channel mixing in heterogeneous giant magnetoresistive material. J. Appl. Phys. 79, 5593–5595 (1996).

    Article  Google Scholar 

  17. Gravier, L., Serrano-Guisan, S., Reuse, F. & Ansermet, J.-Ph. Spin-dependent Peltier effect of perpendicular currents in multilayered nanowires. Phys. Rev. B 73, 052410 (2006).

    Article  Google Scholar 

  18. Doudin, B., Blondel, A. & Ansermet, J.-Ph. Arrays of multilayered nanowires. J. Appl. Phys. 79, 6090–6094 (1996).

    Article  Google Scholar 

  19. Piraux, L. et al. Perpendicular magnetoresistance in Co/Cu multilayered nanowires. J. Magn. Magn. Mater. 156, 317–320 (1996).

    Article  Google Scholar 

  20. Fert, A. & Campbell, I. A. Two-current conduction in nickel. Phys. Rev. Lett. 21, 1190–1192 (1968).

    Article  Google Scholar 

  21. Fert, A. Two-current conduction in ferromagnetic metals and spin wave-electron collisions. J. Phys. C (Solid State Phys.) 2, 1784–1788 (1969).

    Article  Google Scholar 

  22. Piraux, L., Fert, A., Schroeder, P. A., Loloee, R. & Etienne, P. Large magnetothermoelectric power in Co/Cu Fe/Cu and Fe/Cr multilayers. J. Magn. Magn. Mater. 110, L247–L253 (1992).

    Article  Google Scholar 

  23. Piraux, L., Cassart, M., Jiang, J. S., Xiao, J. Q. & Chien, C. L. Magnetothermal transport properties of granular Co-Ag solids. Phys. Rev. B 48, 638–641 (1993).

    Article  Google Scholar 

  24. Gehring, G. A., Gregg, J. F., Thompson, S. M. & Watson, M. L. Electron spin depolarisation in granular magnetic systems. J. Magn. Magn. Mater. 140–144, 501–502 (1995).

    Article  Google Scholar 

  25. Cohen-Tannoudji et al. Quantum Mechanics (Wiley, Paris, complement CIV, 1977).

    Google Scholar 

  26. Slichter, C. P. Principles of Magnetic Resonance (Springer Series in Solid-State Sciences, vol. 1, Springer, Berlin, 1996).

  27. Skumryev, V. et al. Beating the superparamagnetic limit with exchange bias. Nature 423, 850–853 (2003).

    Article  Google Scholar 

  28. Haberland, H. et al. Filling of micron-sized contact holes with copper by energetic cluster impact. J. Vac. Sci. Technol. A 12, 2925–2930 (1994).

    Article  Google Scholar 

  29. Bromann, K. et al. Controlled deposition of size-selected silver nanoclusters. Science 274, 956–958 (1996).

    Article  Google Scholar 

  30. Bernhard, T., Pfandzelter, R., Gruyters, M. & Winter, H. P. Temperature-dependent intermixing of ultrathin Co films grown on Cu(100). Surf. Sci. 575, 154–162 (2005).

    Article  Google Scholar 

  31. Wu, W., Lee, I. J. & Chaikin, P. M. Giant Nernst effect and lock-in currents at magic angles in (TMTSF)2PF6 . Phys. Rev. Lett. 91, 056601 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge A. Fert for guiding us to the importance of spin mixing in our thermodynamical model, J. M. D. Coey for his interest in MTGV measurements and P. M. Chaikin for raising the question of the Nernst effect. The authors acknowledge the Swiss National Science Foundation for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jean-Philippe Ansermet or Christian Félix.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figure S1 (PDF 198 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serrano-Guisan, S., di Domenicantonio, G., Abid, M. et al. Enhanced magnetic field sensitivity of spin-dependent transport in cluster-assembled metallic nanostructures. Nature Mater 5, 730–734 (2006). https://doi.org/10.1038/nmat1713

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1713

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing