Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultra-high-density phase-change storage and memory

Abstract

Phase-change storage is widely used in optical information technologies (DVD, CD-ROM and so on), and recently it has also been considered for non-volatile memory applications. This work reports advances in thermal data recording of phase-change materials. Specifically, we show erasable thermal phase-change recording at a storage density of 3.3 Tb inch−2, which is three orders of magnitude denser than that currently achievable with commercial optical storage technologies. We demonstrate the concept of a thin-film nanoheater to realize ultra-small heat spots with dimensions of less than 50 nm. Finally, we show in a proof-of-concept demonstration that an individual thin-film heater can write, erase and read the phase of these storage materials at competitive speeds. This work provides important stepping stones for a very-high-density storage or memory technology based on phase-change materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thermal recording of ultra-high-density phase-change bit patterns.
Figure 2: Ultra-high-density phase-change bit patterns.
Figure 3: Nanoheater thermal properties.
Figure 4: An all-thermal memory/storage concept.

Similar content being viewed by others

References

  1. Mansuripur, M. Rewritable optical disk technologies. Proc. SPIE 4109, 162–176 (2000).

    Article  Google Scholar 

  2. Yamada, N. Erasable phase-change optical materials. Mater. Res. Soc. Bull. 21, 48–50 (1996).

    Article  Google Scholar 

  3. Lankhorst, M. H. R., Ketelaars, B. W. S. M. M. & Wolter, R. A. Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nature Mater. 4, 347–352 (2005).

    Article  Google Scholar 

  4. Tyson, S. et al. Nonvolatile, high density, high performance phase-change memory. IEEE Aerospace Conf. Proc. 5, 385–395 (2000).

    Google Scholar 

  5. Ovshinsky, S. R. Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450–1453 (1968).

    Article  Google Scholar 

  6. Yang, P. P., Lin, W. C., Hsu, C. C. & Tsai, D. P. in European Symposium on Phase Change and Ovonic Science (Cambridge, 2005); available at <http://www.epcos.org/pdf_2005/Tsai.pdf>.

  7. Kado, H. & Tohda, T. Nanometer-scale recording on chalcogenide films with an atomic force microscope. Appl. Phys. Lett. 66, 2961–2963 (1995).

    Article  Google Scholar 

  8. Gidon, S. et al. Electrical probe storage using Joule heating in phase change media. Appl. Phys. Lett. 85, 6392–6394 (2004).

    Article  Google Scholar 

  9. Gibson, G. A. et al. Phase-change recording medium that enables ultrahigh-density electron-beam data storage. Appl. Phys. Lett. 86, 051902 (2005).

    Article  Google Scholar 

  10. Partovi, A. et al. High-power laser light source for near-field optics and its application to high-density optical data storage. Appl. Phys. Lett. 75, 1515–1517 (1999).

    Article  Google Scholar 

  11. Hosaka, S. et al. Phase-change recording using a scanning near-field optical microscope. J. Appl. Phys. 79, 8082–8086 (1996).

    Article  Google Scholar 

  12. Greer, A. L. in European Symposium on Phase Change and Ovonic Science (Cambridge, 2005); available at <http://www.epcos.org/pdf_2005/Greer.pdf>.

  13. Sugawara, K., Gotoh, T. & Tanaka, K. Minimal phase-change marks produced in amorphous Ge2Sb2Te5 films. Jpn J. Appl. Phys. 43, 818–821 (2004).

    Article  Google Scholar 

  14. Privitera, S., Bongiorno, C., Rimini, E. & Zonca, R. Crystal nucleation and growth processes in Ge2Sb2Te5 . Appl. Phys. Lett. 84, 4448–4450 (2004).

    Article  Google Scholar 

  15. Dick, K., Dhanasekaran, T., Zhang, Z. & Meisel, D. Size-dependent melting of silica-encapsulated gold nanoparticles. J. Am. Chem. Soc. 124, 2312–2317 (2002).

    Article  Google Scholar 

  16. Weidenhof, V., Friedrich, I., Ziegler, S. & Wuttig, M. Laser induced crystallization of amorphous Ge2Sb2Te5 films. J. Appl. Phys. 89, 3168–3176 (2001).

    Article  Google Scholar 

  17. Hamann, H. F., O’Boyle, M. P., Wickramasinghe, H. K. & Chey, S. J. Assembly for thermal and/or thermally-assisted information processing. US Patent US20040190175A1 (2004).

  18. Hsieh, Y. C., Mansuripur, M., Volkmer, J. & Brewen, A. Measurements of thermal coefficients of nonreversible phase-change optical recording films. Appl. Opt. 36, 866–872 (1997).

    Article  Google Scholar 

  19. Weidenhof, V., Pirch, N., Friedrich, I., Ziegler, S. & Wuttig, M. Minimum time for laser induced amorphization of Ge2Sb2Te5 films. J. Appl. Phys. 88, 657–664 (2000).

    Article  Google Scholar 

  20. Hamann, H. F., Martin, Y. C. & Wickramasinghe, H. K. Thermally assisted recording beyond traditional limits. Appl. Phys. Lett. 84, 810–812 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Wuttig and S. Raoux for helpful discussions about phase-change material properties. We also thank J. Chey for his assistance with sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik F. Hamann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary discussions and figures S1 - S6 (PDF 467 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamann, H., O'Boyle, M., Martin, Y. et al. Ultra-high-density phase-change storage and memory. Nature Mater 5, 383–387 (2006). https://doi.org/10.1038/nmat1627

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1627

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing