Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Photosensitive gold-nanoparticle-embedded dielectric nanowires

Abstract

Noble-metal nanoparticles embedded in dielectric matrices are considered to have practical applications in ultrafast all-optical switching devices owing to their enhanced third-order nonlinear susceptibility, especially near the surface-plasmon-resonance (SPR) frequency1,2. Here we present the use of a microreactor approach to the fabrication of a self-organized photosensitive gold nanoparticle chain encapsulated in a dielectric nanowire. Such a hybrid nanowire shows pronounced SPR absorption. More remarkably, a strong wavelength-dependent and reversible photoresponse has been demonstrated in a two-terminal device using an ensemble of gold nanopeapodded silica nanowires under light illumination, whereas no photoresponse was observed for the plain silica nanowires. These results show the potential of using gold nanopeapodded silica nanowires as wavelength-controlled optical nanoswitches. The microreactor approach can be applied to the preparation of a range of hybrid metal–dielectric one-dimensional nanostructures that can be used as functional building blocks for nanoscale waveguiding devices, sensors and optoelectronics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Growth and structure of the Au nanopeapodded silica nanowires.
Figure 2: TEM images and EDX spectra of the gold nanopeapodded silica nanowire.
Figure 3: Cathodoluminescence spectra and ultraviolet–visible absorption spectra.
Figure 4: Photoresponse measurements.

Similar content being viewed by others

References

  1. Hache, F., Ricard, D. & Flytzanis, C. Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects. J. Opt. Soc. Am. B 3, 1647–1655 (1986).

    Article  Google Scholar 

  2. Haglund, R. F. et al. Picosecond nonlinear optical response of a Cu:silica nanocluster composite. Opt. Lett. 18, 373–375 (1993).

    Article  Google Scholar 

  3. Kiesow, A., Morris, J. E., Radehaus, C. & Heilmann, A. Switching behavior of plasma polymer films containing silver nanoparticles. J. Appl. Phys. 94, 6988–6990 (2003).

    Article  Google Scholar 

  4. Liao, H. B. et al. Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold. Appl. Phys. Lett. 70, 1–3 (1997).

    Article  Google Scholar 

  5. Wang, W. T. et al. Resonant absorption quenching and enhancement of optical nonlinearity in Au:BaTiO3 composite films by adding Fe nanoclusters. Appl. Phys. Lett. 83, 1983–1985 (2003).

    Article  Google Scholar 

  6. Dalacu, D. & Martinu, L. Temperature dependence of the surface plasmon resonance of Au/SiO2 nanocomposite films. Appl. Phys. Lett. 77, 4283–4285 (2000).

    Article  Google Scholar 

  7. Pardo-Yissar, V., Gabai, R., Shipway, A. N., Bourenko, T. & Willner, I. Gold nanoparticle/hydrogel composites with solvent-switchable electronic properties. Adv. Mater. 13, 1320–1323 (2001).

    Article  Google Scholar 

  8. Dhara, S. et al. Quasiquenching size effects in gold nanoclusters embedded in silica matrix. Chem. Phys. Lett. 370, 254–260 (2003).

    Article  Google Scholar 

  9. Quinten, M., Leitner, A., Krenn, J. R. & Aussengg, F. R. Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett. 23, 1331–1333 (1998).

    Article  Google Scholar 

  10. Brongersma, M. L., Hartman, J. W. & Atwater, H. A. Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit. Phys. Rev. B 62, R16356–16359 (2000).

    Article  Google Scholar 

  11. Smith, B. W., Monthioux, M. & Luzzi, D. E. Encapsulated C60 in carbon nanotubes. Nature 396, 323–324 (1998).

    Article  Google Scholar 

  12. Wu, J. S. et al. Growth and optical properties of self-organized Au2Si nanospheres pea-podded in a silicon oxide nanowire. Adv. Mater. 14, 1847–1850 (2002).

    Article  Google Scholar 

  13. Yoon, Y.-G., Mazzoni, M. S. C. & Louie, S. G. Quantum conductance of carbon nanotube peapods. Appl. Phys. Lett. 83, 5217–5219 (2003).

    Article  Google Scholar 

  14. Chiu, P. W. et al. Temperature-induced change from p to n conduction in metallofullerene nanotube peapods. Appl. Phys. Lett. 70, 3845–3847 (2001).

    Article  Google Scholar 

  15. Seifert, G., Köhler, Th., Urbassek, H. M., Hernández, E. & Frauenheim, Th. Tubular structures of silicon. Phys. Rev. B 63, 193409 (2001).

    Article  Google Scholar 

  16. Leeuw, N. H. d., Du, Z., Li, J., Yip, S. & Zhu, T. Computer modeling study of the effect of hydration on the stability of a silica nanotube. Nano Lett. 3, 1347–1352 (2003).

    Article  Google Scholar 

  17. Li, Y., Bando, Y. & Golberg, D. Indium-assisted growth of aligned ultra-long silica nanotubes. Adv. Mater. 16, 37–40 (2004).

    Article  Google Scholar 

  18. Roorda, S. et al. Aligned gold nanorods in silica made by ion irradiation of core-shell colloidal particles. Adv. Mater. 16, 235–237 (2004).

    Article  Google Scholar 

  19. Franceschetti, A., Pennycook, S. J. & Pantelides, S. T. Oxygen chemisorption on Au nanoparticles. Chem. Phys. Lett. 374, 471–475 (2003).

    Article  Google Scholar 

  20. Alessandrini, E. I., Campbell, D. R. & Tu, K. N. Interfacial reaction in MOS structures. J. Vac. Sci. Technol. 13, 55–57 (1976).

    Article  Google Scholar 

  21. Yao, B., Shi, H., Zhang, X. & Zhang, L. Ultraviolet photoluminescence from nonbridging oxygen hole centers in porous silica. Appl. Phys. Lett. 78, 174–176 (2001).

    Article  Google Scholar 

  22. Munekuni, S. et al. Si-O-Si strained bond and paramagnetic defect centers induced by mechanical fracturing in amorphous SiO2 . J. Appl. Phys. 70, 5054–5062 (1991).

    Article  Google Scholar 

  23. Yu, D. P. et al. Amorphous silica nanowires: Intensive blue light emitters. Appl. Phys. Lett. 73, 3076–3078 (1998).

    Article  Google Scholar 

  24. He, H., Wang, Y. & Tang, H. Intense ultraviolet and green photoluminescence from sol–gel derived silica containing hydrogenated carbon. J. Phys. Condens. Matter 14, 11867–11874 (2002).

    Article  Google Scholar 

  25. Zhao, J. et al. Intense short-wavelength photoluminescence from thermal SiO2 films co-implanted with Si and C ions. Appl. Phys. Lett. 73, 1838–1840 (1998).

    Article  Google Scholar 

  26. Socrates, G. Infrared Characteristic Group Frequencies (Wiley, Bristol, 1980).

    Google Scholar 

  27. Jana, N. R., Gearheart, L. & Murphy, C. J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv. Mater. 13, 1389–1393 (2003).

    Article  Google Scholar 

  28. Gu, J.-L. et al. Incorporation of highly dispersed gold nanoparticles into the pore channels of mesoporous silica thin films and their ultrafast nonlinear optical response. Adv. Mater. 17, 557–560 (2005).

    Article  Google Scholar 

  29. Yiang, K. Y., Yoo, W. J., Guo, Q. & Krishnamoorthy, A. Investigation of electrical conduction in carbon-doped silicon oxide using a voltage ramp method. Appl. Phys. Lett. 83, 524–526 (2003).

    Article  Google Scholar 

  30. Berthold, K., Höpfel, R. A. & Gornik, E. Surface plasmon polariton enhanced photoconductivity of tunnel junctions in the visible. Appl. Phys. Lett. 46, 626–628 (1985).

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Ministry of Education and National Science Council in Taiwan. Technical support provided by the Core Facilities for Nano Science and Technology in Academia Sinica and National Taiwan University are acknowledged. Fruitful discussions and technical help from Y. F. Huang, S. Chattopadhyay, as well as C.-H. Chen, J.-S. Hwang and R.-l. Chang were also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Chyong Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2 and S3 (PDF 257 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, MS., Chen, HL., Shen, CH. et al. Photosensitive gold-nanoparticle-embedded dielectric nanowires. Nature Mater 5, 102–106 (2006). https://doi.org/10.1038/nmat1564

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1564

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing