Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture

Abstract

Properties of the organic matrix of bone1 as well as its function in the microstructure2 could be the key to the remarkable mechanical properties of bone3. Previously, it was found that on the molecular level, calcium-mediated sacrificial bonds increased stiffness and enhanced energy dissipation in bone constituent molecules4,5. Here we present evidence for how this sacrificial bond and hidden length mechanism contributes to the mechanical properties of the bone composite, by investigating the nanoscale arrangement of the bone constituents6,7,8 and their interactions. We find evidence that bone consists of mineralized collagen fibrils and a non-fibrillar organic matrix2, which acts as a ‘glue’ that holds the mineralized fibrils together. We believe that this glue may resist the separation of mineralized collagen fibrils. As in the case of the sacrificial bonds in single molecules5, the effectiveness of this mechanism increases with the presence of Ca2+ ions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mineralized collagen fibrils interconnected by a glue-like component.
Figure 2: The AFM can measure the restoring forces between mineralized fibrils in the bone.
Figure 3: Possible kinds of sacrificial bonds involved in the glue between the mineralized collagen fibrils.

Similar content being viewed by others

References

  1. Burr, D. B. The contribution of the organic matrix to bone’s material properties. Bone 31, 8–11 (2002).

    Article  CAS  Google Scholar 

  2. Braidotti, P., Branca, F. P. & Stagni, L. Scanning electron microscopy of human cortical bone failure surfaces. J. Biomech. 30, 155–162 (1997).

    Article  CAS  Google Scholar 

  3. Rho, J. Y., Kuhn-Spearing, L. & Zioupos, P. Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20, 92–102 (1998).

    Article  CAS  Google Scholar 

  4. Currey, J. D. Sacrificial bonds heal bone. Nature 414, 699 (2001).

    Article  CAS  Google Scholar 

  5. Thompson, J. B. et al. Bone indentation recovery time correlates with bond reforming time. Nature 414, 773–776 (2001).

    Article  CAS  Google Scholar 

  6. Hassenkam, T. et al. High-resolution AFM imaging of intact and fractured trabecular bone. Bone 35, 4–10 (2004).

    Article  Google Scholar 

  7. Grynpas, M. D., Tupy, J. H. & Sodek, J. The distribution of soluble, mineral-bound, and matrix-bound proteins in osteoporotic and normal bones. Bone 15, 505–513 (1994).

    Article  CAS  Google Scholar 

  8. Taton, T. A. Boning up on biology. Nature 412, 491–492 (2001).

    Article  CAS  Google Scholar 

  9. Ciarelli, M. J., Goldstein, S. A., Kuhn, J. L., Cody, D. D. & Brown, M. B. Evaluation of orthogonal mechanical properties and density of human trabecular bone from the major metaphyseal regions with materials testing and computed tomography. J. Orthop. Res. 9, 674–682 (1991).

    Article  CAS  Google Scholar 

  10. Muller, R. The Zurich experience: one decade of three-dimensional high-resolution computed tomography. Top. Magn. Reson. Imaging 13, 307–322 (2002).

    Article  Google Scholar 

  11. Reilly, G. C. & Currey, J. D. The effects of damage and microcracking on the impact strength of bone. J. Biomech. 33, 337–343 (2000).

    Article  CAS  Google Scholar 

  12. Burr, D. B. et al. Does microdamage accumulation affect the mechanical properties of bone? J. Biomech. 31, 337–345 (1998).

    Article  CAS  Google Scholar 

  13. Weiner, S., Arad, T., Sabanay, I. & Traub, W. Rotated plywood structure of primary lamellar bone in the rat: Orientations of the collagen fibril arrays. Bone 20, 509–514 (1997).

    Article  CAS  Google Scholar 

  14. Nalla, R. K., Kinney, J. H. & Ritchie, R. O. Mechanistic fracture criteria for the failure of human cortical bone. Nature Mater. 2, 164–168 (2003).

    Article  CAS  Google Scholar 

  15. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M. & Gaub, H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997).

    Article  CAS  Google Scholar 

  16. Seitz, M., Friedsam, C., Jostl, W., Hugel, T. & Gaub, H. E. Probing solid surfaces with single polymers. Chem. Phys. Chem. 4, 986–990 (2003).

    Article  Google Scholar 

  17. Smith, B. L. et al. Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399, 761–763 (1999).

    Article  CAS  Google Scholar 

  18. Becker, N. et al. Molecular nanosprings in spider capture-silk threads. Nature Mater. 2, 278–283 (2003).

    Article  CAS  Google Scholar 

  19. Jager, I. & Fratzl, P. Mineralized collagen fibrils: A mechanical model with a staggered arrangement of mineral particles. Biophys. J. 79, 1737–1746 (2000).

    Article  CAS  Google Scholar 

  20. Yeni, Y. N. & Fyhrie, D. P. in ASME Bioengineering Conf. Vol. 50 293–294 (ASME, New York, 2001).

    Google Scholar 

  21. Nalla, R. K., Kruzic, J. J., Kinney, J. H. & Ritchie, R. O. Effect of aging on the toughness of human cortical bone: evaluation by R-curves. Bone 35, 1240–1246 (2004).

    Article  CAS  Google Scholar 

  22. Raspanti, M., Congiu, T., Alessandrini, A., Gobbi, P. & Ruggeri, A. Different patterns of collagen-proteoglycan interaction: a scanning electron microscopy and atomic force microscopy study. Eur. J. Histochem. 44, 335–343 (2000).

    CAS  Google Scholar 

  23. McKee, M. D. & Nanci, A. Osteopontin at mineralized tissue interfaces in bone, teeth, and osseointegrated implants: ultrastructural distribution and implications for mineralized tissue formation, turnover, and repair. Microsc. Res. Tech. 33, 141–164 (1996).

    Article  CAS  Google Scholar 

  24. Ferris, B. D., Klenerman, L., Dodds, R. A., Bitensky, L. & Chayen, J. Altered organization of noncollagenous bone-matrix in osteoporosis. Bone 8, 285–288 (1987).

    Article  CAS  Google Scholar 

  25. Robey, P. G. et al. Structure and molecular regulation of bone-matrix proteins. J. Bone Min. Res. 8, S483–S487 (1993).

    Article  Google Scholar 

  26. Young, M. F. Bone matrix proteins: their function, regulation, and relationship to osteoporosis. Osteopor. Int. 14, S35–S42 (2003).

    Article  CAS  Google Scholar 

  27. Hoang, Q. Q., Sicheri, F., Howard, A. J. & Yang, D. S. C. Bone recognition mechanism of porcine osteocalcin from crystal structure. Nature 425, 977–980 (2003).

    Article  CAS  Google Scholar 

  28. Parsamian, G. P. & Norman, T. L. Diffuse damage accumulation in the fracture process zone of human cortical bone specimens and its influence on fracture toughness. J. Mater. Sci.-Mater. Med. 12, 779–783 (2001).

    Article  CAS  Google Scholar 

  29. Yeni, Y. N. & Fyhrie, D. P. A rate-dependent microcrack-bridging model that can explain the strain rate dependency of cortical bone apparent yield strength. J. Biomech. 36, 1343–1353 (2003).

    Article  Google Scholar 

  30. Wang, R. Z., Suo, Z., Evans, A. G., Yao, N. & Aksay, I. A. Deformation mechanisms in nacre. J. Mater. Res. 16, 2485–2493 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank A. Diez-Perez, H. Waite, K. Fields, S. Weiner, M. Rief, W. Landis, P. Fratzl and S. Masahiko for their suggestions and discussion. We also thank Gelson’s Markets, Santa Barbara, especially Phil Vega, for supplying fresh bovine vertebrae. This research was supported by: NASA University Research, Engineering and Technology Institute on Bio Inspired Materials, NIH, NSF, the Institute for Collaborative Biotechnologies from the US Army Research Office, Veeco Instruments, the UCSB Materials Research Laboratory, the NOAA National Sea Grant College Program, US Dept of Commerce through the California Sea Grant College System and a CNPq Fellowship, Brazil. T.H. and H.B. thank the Danish research council for additional support. G.F. thanks the Austrian Academy of Science for a DOC scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg E. Fantner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fantner, G., Hassenkam, T., Kindt, J. et al. Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nature Mater 4, 612–616 (2005). https://doi.org/10.1038/nmat1428

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1428

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing