Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Breakdown of avalanche critical behaviour in polycrystalline plasticity

Abstract

Acoustic emission experiments on creeping ice as well as numerical simulations argue for a self-organization of collective dislocation dynamics during plastic deformation of single crystals into a scale-free pattern of dislocation avalanches characterized by intermittency, power-law distributions of avalanche sizes, complex space-time correlations and aftershock triggering. Here, we address the question of whether such scale-free, close-to-critical dislocation dynamics will still apply to polycrystals. We show that polycrystalline plasticity is also characterized by intermittency and dislocation avalanches. However, grain boundaries hinder the propagation of avalanches, as revealed by a finite (grain)-size effect on avalanche size distributions. We propose that the restraint of large avalanches builds up internal stresses that push temporally the dynamical system into a supercritical state, off the scale-invariant critical regime, and trigger secondary avalanches in neighbouring grains. This modifies the statistical properties of the avalanche population. The results might also bring into question the classical ways of modelling plasticity in polycrystalline materials, based on homogenization procedures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microstructures of the polycrystalline ice samples.
Figure 2: Distributions of dislocation avalanche sizes in polycrystals.
Figure 3: Grain-size effect on the dislocation avalanche sizes.
Figure 4: Avalanche durations in polycrystals.
Figure 5: Distributions of avalanche sizes in Monte Carlo simulations.

Similar content being viewed by others

References

  1. Zaiser, M. & Seeger, A. in Dislocations in Solids (eds Nabarro, F. R. N. & Duesbury, M. S.) 1–100 (Elsevier, Amsterdam, 2002).

    Book  Google Scholar 

  2. Miguel, M. C., Vespignani, A., Zapperi, S., Weiss, J. & Grasso, J. R. Intermittent dislocation flow in viscoplastic deformation. Nature 410, 667–671 (2001).

    Article  CAS  Google Scholar 

  3. Koslowski, M., LeSar, R. & Thomson, R. Avalanches and scaling in plastic deformation. Phys. Rev. Lett. 93, 125502 (2004).

    Article  Google Scholar 

  4. Weiss, J. & Miguel, M. -C. Dislocation avalanche correlations. Mater. Sci. Eng. A 387–389, 292–296 (2004).

  5. Weiss, J. & Marsan, D. Three dimensional mapping of dislocation avalanches: clustering and space/time coupling. Science 299, 89–92 (2003).

    Article  CAS  Google Scholar 

  6. Bak, P., Tang, C. & Wiesenfeld, K. Self-organized criticality. Phys. Rev. A 38, 364–374 (1988).

    Article  CAS  Google Scholar 

  7. Liu, F. & Baker, I. Dislocation-grain boundary interactions in ice crystals. Phil. Mag. A 71, 15–42 (1995).

    Article  CAS  Google Scholar 

  8. Baillin, X., Pelissier, J., Bacmann, J. J., Jacques, A. & George, A. Dislocation transmission through Σ = 9 symmetrical tilt boundaries in silicon and germanium. I. In situ observations by synchrotron X-ray topography and high-voltage electron microscopy. Phil. Mag. A 55, 143–164 (1987).

    Article  CAS  Google Scholar 

  9. Baillin, X., Pelissier, J., Jacques, A. & George, A. Direct evidence of dislocation transmission through Σ = 9 grain boundaries in germanium and silicon by in situ high-voltage electron microscopy observations. Phil. Mag. A 61, 329, 362 (1990).

    Article  CAS  Google Scholar 

  10. Louchet, F. in 7th Int. Symp. Plasticity and its Current Applications (ed. Khan, A. S.) 585–588 (NEAT Press, Fulton, Maryland, 1999).

    Google Scholar 

  11. Louchet, F. & Kung, H. On the Hall–Petch law breakdown in nanocrystalline materials. J. Metastable Nanocryst. Mater. 7, 55–63 (2000).

    Article  Google Scholar 

  12. van Swygenhoven, H. Grain boundaries and dislocations. Science 296, 66–67 (2002).

    Article  CAS  Google Scholar 

  13. Frost, H. J. Mechanisms of crack nucleation in ice. Eng. Fracture Mech. 68, 1823–1837 (2001).

    Article  Google Scholar 

  14. Rouby, D., Fleischman, P. & Duvergier, C. Un modèle de source d'émission acoustique pour l'analyse de l'émission continue et de l'émission par salves: I. Analyse théorique. Phil. Mag. A 47, 671–687 (1983).

    CAS  Google Scholar 

  15. Weiss, J. & Grasso, J. R. Acoustic emission in single crystals of ice. J. Phys. Chem. 101, 6113–6117 (1997).

    Article  CAS  Google Scholar 

  16. Richeton, T., Weiss, J. & Louchet, F. in Proc. 2nd Int. Conf. Multiscale Materials Modeling (ed. Ghoniem, N. M.) 239–241 (Los Angeles, California, 2004).

    Google Scholar 

  17. Stanley, H. E. Scaling, universality, and renormalization: The three pillars of modern critical phenomena. Rev. Mod. Phys. 71, S358–S366 (1999).

    Article  CAS  Google Scholar 

  18. Main, I. G., Sammonds, P. R. & Meredith, P. G. Application of a modified Griffith criterion to the evolution of fractal damage during compressional rock failure. Geophys. J. Int. 115, 367–380 (1993).

    Article  Google Scholar 

  19. Jensen, H. J. Self-Organized Criticality (Cambridge Univ. Press, Cambridge, 1998).

    Book  Google Scholar 

  20. Main, I. Statistical physics, seismogenesis, and seismic hazard. Rev. Geophys. 34, 433–462 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. C. Miguel for providing us the output data of her model, and A. Manouvrier for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Weiss.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richeton, T., Weiss, J. & Louchet, F. Breakdown of avalanche critical behaviour in polycrystalline plasticity. Nature Mater 4, 465–469 (2005). https://doi.org/10.1038/nmat1393

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1393

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing