Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spin chirality on a two-dimensional frustrated lattice

Abstract

The collective behaviour of interacting magnetic moments can be strongly influenced by the topology of the underlying lattice. In geometrically frustrated spin systems, interesting chiral correlations may develop that are related to the spin arrangement on triangular plaquettes. We report a study of the spin chirality on a two-dimensional geometrically frustrated lattice. Our new chemical synthesis methods allow us to produce large single-crystal samples of KFe3(OH)6(SO4)2, an ideal Kagomé lattice antiferromagnet. Combined thermodynamic and neutron scattering measurements reveal that the phase transition to the ordered ground-state is unusual. At low temperatures, application of a magnetic field induces a transition between states with different non-trivial spin-textures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Kagomé lattice with spins arranged in two different configurations.
Figure 2: Magnetization and specific heat measurements of KFe3(OH)6(SO4)2.
Figure 3: Measurements of the field-induced transition to a state with non-zero scalar chirality.
Figure 4: Inelastic neutron scattering data for KFe3(OH)6(SO4)2 measured above TN, along with structure factor calculations.

Similar content being viewed by others

References

  1. Ramirez, A. P. in Handbook on Magnetic Materials Vol. 13 (ed. Busch, K. J. H) 423–520 (Elsevier Science, Amsterdam, 2001).

    Google Scholar 

  2. Bramwell, S. T. & Gingras, M. J. P. Spin ice state in frustrated magnetic pyrochlore materials. Science 294, 1495–1501 (2001).

    Article  CAS  Google Scholar 

  3. Harris, A. B., Kallin, C. & Berlinsky, A. J. Possible Néel orderings of the Kagomé antiferromagnet. Phys. Rev. B 45, 2899–2919 (1992).

    Article  CAS  Google Scholar 

  4. Sachdev, S. Kagomé and triangular-lattice Heisenberg antiferromagnets: ordering from quantum fluctuations and quantum-disordered ground states with unconfined bosonic spinons. Phys. Rev. B 45, 12377–12396 (1992).

    Article  CAS  Google Scholar 

  5. Chalker, J. T., Holdsworth, P. C. W. & Shender, E. F. Hidden order in a frustrated system: properties of the Heisenberg Kagomé antiferromagnet. Phys. Rev. Lett. 68, 855–858 (1992).

    Article  CAS  Google Scholar 

  6. Ritchey, I., Chandra, P. & Coleman, P. Spin folding in the two-dimensional Heisenberg Kagomé antiferromagnet. Phys. Rev. B 47, 15342–15345 (1993).

    Article  CAS  Google Scholar 

  7. Inami, T., Nishiyama, M., Maegawa, S. & Oka, Y. Magnetic structure of the Kagomé lattice antiferromagnet potassium jarosite KFe3(OH)6(SO4)2 . Phys. Rev. B 61, 12181–12186 (2000).

    Article  CAS  Google Scholar 

  8. Wills, A. S. Long-range ordering and representational analysis of the jarosites. Phys. Rev. B 63, 064430 (2001).

    Article  Google Scholar 

  9. Wen, X. G., Wilczek, F. & Zee, A. Chiral spin states and superconductivity. Phys. Rev. B 39, 11413–11423 (1989).

    Article  CAS  Google Scholar 

  10. Ohgushi, K., Murakami, S. & Nagaosa, N. Spin anisotropy and quantum Hall effect in the Kagomé lattice: chiral spin state based on a ferromagnet. Phys. Rev. B 62, R6065–R6068 (2000).

    Article  CAS  Google Scholar 

  11. Taguchi, Y., Oohara, Y., Yoshizawa, H., Nagaosa, N. & Tokura, Y. Spin chirality, Berry phase, and anomalous Hall effect in a frustrated ferromagnet. Science 291, 2573–2576 (2001).

    Article  CAS  Google Scholar 

  12. Wills, A. S., Harrison, A., Ritter, C. & Smith, R. I. Magnetic properties of pure and diamagnetically doped jarosites: model Kagome antiferromagnets with variable coverage of the magnetic lattice. Phys. Rev. B 61, 6156–6169 (2000).

    Article  CAS  Google Scholar 

  13. Nocera, D. G., Bartlett, B. M., Grohol, D., Papoutsakis, D. & Shores, M. P. Spin frustration in 2D Kagomé lattices: a problem for inorganic synthetic chemistry. Chem. Eur. J. 10, 3850–3859 (2004).

    Article  Google Scholar 

  14. Kawamura, H. in Proc. Workshop on Low-Dimensional Quantum Antiferromagnets (Fukuoka, November 2001); cond-mat/0202109.

    Google Scholar 

  15. Calabrese, P. & Parruccini, P. Critical behavior of two-dimensional frustrated spin models with noncollinear order. Phys. Rev. B 64, 184408 (2001).

    Article  Google Scholar 

  16. Mason, T. E., Gaulin, B. D. & Collins, M. F. Neutron scattering measurements of critical exponents in CsMnBr3: a Z2 × S1 antiferromagnet. Phys. Rev. B 39, 586–590 (1989).

    Article  CAS  Google Scholar 

  17. Plakhty, V. P. et al. Chiral criticality in helimagnet Ho studied by polarized neutron scattering. Phys. Rev. B 64, 100402 (2001).

    Article  Google Scholar 

  18. Grohol, D., Nocera, D. G. & Papoutsakis, D. Magnetism of pure iron jarosite. Phys. Rev. B 67, 064401 (2003).

    Article  Google Scholar 

  19. Elhajal, M., Canals, B. & Lacroix, C. Symmetry breaking due to Dzyaloshinsky–Moriya interactions in the Kagomé lattice. Phys. Rev. B 66, 014422 (2002).

    Article  Google Scholar 

  20. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    Article  CAS  Google Scholar 

  21. Wells, B. O. et al. Intercalation and staging behavior in super-oxygenated La2CuO4+d . Z. Phys. B 100, 535–545 (1996).

    Article  CAS  Google Scholar 

  22. Thio, T. et al. Antisymmetric exchange and its influence on the magnetic structure and conductivity of La2CuO4 . Phys. Rev. B 38, 905–908 (1988).

    Article  CAS  Google Scholar 

  23. Reimers, J. N. & Berlinsky, A. J. Order by disorder in the classical Heisenberg Kagomé antiferromagnet. Phys. Rev. B 48, 9539–9554 (1993).

    Article  CAS  Google Scholar 

  24. Nishiyama, M., Maegawa, S., Inami, T., & Oka, Y. Magnetic ordering and spin dynamics in potassium jarosite: a Heisenberg Kagomé lattice antiferromagnet. Phys. Rev. B 67, 224435 (2003).

    Article  Google Scholar 

  25. Chubukov, A. Order from disorder in a Kagomé antiferromagnet. Phys. Rev. Lett. 69, 832–835 (1992).

    Article  CAS  Google Scholar 

  26. Lee, S. H. et al. Less than 50% sublattice polarization in an insulating S=3/2 Kagomé antiferromagnet at T 0. Phys. Rev. B 56, 8091–8097 (1997).

    Article  CAS  Google Scholar 

  27. Yildirim, T., Harris, A. B., Aharony, A. & Entin-Wohlman, O. Anisotropic spin Hamiltonian due to spin-orbit and coulomb exchange interactions. Phys. Rev. B 52, 10239–10267 (1995).

    Article  CAS  Google Scholar 

  28. Mermin, N. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 22, 1133–1136 (1966).

    Article  Google Scholar 

  29. von Delft, J. & Henley, C. L. Spin tunneling in the Kagomé antiferromagnet. Phys. Rev. B 48, 965–984 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Clearfield for providing the large hydrothermal vessels used in the crystal growth. We thank Y.-B. Kim, T. Senthil and T. Yildirim for useful discussions. This work was supported in part by the MRSEC Program of the National Science Foundation under award number DMR 02-13282 and also by NSF award DMR-0239377.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young S. Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figure S1 (PDF 75 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grohol, D., Matan, K., Cho, JH. et al. Spin chirality on a two-dimensional frustrated lattice. Nature Mater 4, 323–328 (2005). https://doi.org/10.1038/nmat1353

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1353

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing