Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ferromagnetic semiconductors: moving beyond (Ga,Mn)As

Abstract

The recent development of MBE techniques for growth of III–V ferromagnetic semiconductors has created materials with exceptional promise in spintronics, that is, electronics that exploit carrier spin polarization. Among the most carefully studied of these materials is (Ga,Mn)As, in which meticulous optimization of growth techniques has led to reproducible materials properties and ferromagnetic transition temperatures well above 150 K. We review progress in the understanding of this particular material and efforts to address ferromagnetic semiconductors as a class. We then discuss proposals for how these materials might find applications in spintronics. Finally, we propose criteria that can be used to judge the potential utility of newly discovered ferromagnetic semiconductors, and we suggest guidelines that may be helpful in shaping the search for the ideal material.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The lattice structure and transition temperature trend in Ga1–xMnxAs.
Figure 2: The temperature dependence of the magnetization and resistivity of Ga0.083Mn0.917As (ref. 36).
Figure 3: Pictorial explanation of carrier-induced ferromagnetism in semiconductors.
Figure 4: Theory of carrier-induced ferromagnetism in semiconductors.

Similar content being viewed by others

References

  1. Out of the Crystal Maze: Chapters from the History of Solid-State Physics (eds Hoddeson, L., Braun, E., Teichmann, J. & Weart, S.) (Oxford Univ. Press, Oxford, 1992).

  2. Semiconductor Spintronics and Quantum Computation (eds Awschalom, D. D., Loss, D. & Samarth, N.) (Springer, Berlin, 2002).

  3. Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  CAS  Google Scholar 

  4. Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications Rev. Mod. Phys. 76, 323–410 (2004).

    Google Scholar 

  5. Flatte, M. E., Yu, Z. G., Johnston-Halperin, E. & Awschalom, D. D. Theory of semiconductor magnetic bipolar transistors. Appl. Phys. Lett. 82, 4740–4742 (2003).

    CAS  Google Scholar 

  6. Matsumoto, Y. et al. Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 291, 854–856 (2001).

    CAS  Google Scholar 

  7. Sharma, P. et al. Ferromagnetism above room temperature in bulk and transparent thin films of Mn doped ZnO. Nature Mater. 2, 673–677 (2003).

    CAS  Google Scholar 

  8. Saito, H., Zayets, V., Yamagata, S. & Ando A. Room-temperature ferromagnetism in a II–VI diluted magnetic semiconductor Zn1–xCrx Te, K. Phys. Rev. Lett. 90, 207202 (2003).

    CAS  Google Scholar 

  9. Chambers, S.A. et al. Clusters and magnetism in epitaxial Co-doped TiO2 anatase. Appl. Phys. Lett. 82, 1257–1259 (2003).

    CAS  Google Scholar 

  10. Pearton, S.J. et al. Wide band gap ferromagnetic semiconductors and oxides. J. Appl. Phys. 93, 1–13 (2003).

    CAS  Google Scholar 

  11. Theodoropoulou, N. et al. Unconventional carrier-mediated ferromagnetism above room temperature in ion-implanted (Ga, Mn)P: C. Phys. Rev. Lett. 89, 107203 (2002).

    CAS  Google Scholar 

  12. Chen, X. et al. Above-room-temperature ferromagnetism in GaSb/Mn digital alloys. Appl. Phys. Lett. 81, 511–513 (2002).

    CAS  Google Scholar 

  13. Park, S.E. et al. Room-temperature ferromagnetism in Cr-doped GaN single crystals. Appl. Phys. Lett. 80, 4187–4189 (2002).

    CAS  Google Scholar 

  14. Thaler, G.T. et al. Magnetic properties of n-GaMnN thin films. Appl. Phys. Lett. 80, 3964–3966 (2002).

    CAS  Google Scholar 

  15. Norton, D.P. et al. Ferromagnetism in Mn-implanted ZnO: Sn single crystals. Appl. Phys. Lett. 82, 239–241 (2003).

    CAS  Google Scholar 

  16. Sasaki, T. et al. Magnetic and transport characteristics on high Curie temperature ferromagnet of Mn-doped GaN. J. Appl. Phys. 91, 7911–7913 (2002).

    CAS  Google Scholar 

  17. Ogale, S. B. et al. High temperature ferromagnetism with a giant magnetic moment in transparent Co-doped SnO2-delta. Phys. Rev. Lett. 91, 077205 (2003).

    CAS  Google Scholar 

  18. Coey, J. M. D., Douvalis, A. P., Fitzgerald, C. B. & Venkatesan, M. Ferromagnetism in Fe-doped SnO2 thin films. Appl. Phys. Lett. 84, 1332–1334 (2004).

    CAS  Google Scholar 

  19. Theodoropoulo, N. A. et al. Ferromagnetism in Co- and Mn-doped ZnO. Solid State Electron. 47, 2231–2235 (2003).

    Google Scholar 

  20. Chambers, S. A. & Farrow, R. F. C. New possibilities for ferromagnetic semiconductors Mater. Res. Soc. Bull. 28, 729–733 (2003).

    CAS  Google Scholar 

  21. Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000).

    CAS  Google Scholar 

  22. Mauger, A. & Godart, C. The magnetic, optical, and transport properties of representatives of a class of magnetic semiconductors: the europium chalcogenides. Phys. Rep. 141, 51–176 (1986).

    CAS  Google Scholar 

  23. Story, T., Galazka, R. R., Frankel R. B., & Wolff, P. A. Carrier-concentration–induced ferromagnetism in PbSnMnTe. Phys. Rev. Lett. 56, 777–780 (1986).

    CAS  Google Scholar 

  24. Ohno, H. et al. Magnetotransport properties of p-type (In,Mn)As diluted magnetic III–V semiconductors. Phys. Rev. Lett. 68, 2664–2667 (1992).

    CAS  Google Scholar 

  25. Munekata, H. et al. Diluted magnetic III–V semiconductors. Phys. Rev. Lett. 63, 1849–1852 (1989).

    CAS  Google Scholar 

  26. Ohno, H. et al. (Ga,Mn)As: a new ferromagnetic semiconductor based on GaAs. Appl. Phys. Lett. 69, 363–365 (1996).

    CAS  Google Scholar 

  27. Nazmul, A. M., Sugahara, S. & Tanaka, M. Ferromagnetism and high Curie temperature in semiconductor heterostructures with Mn δ-doped GaAs and p-type selective doping. Phys. Rev. B 67, 241308 (2003).

    Google Scholar 

  28. Edmonds, K. W. et al. High Curie temperature (Ga,Mn)As obtained by resistance monitored annealing. Appl. Phys. Lett. 81, 4991–4993 (2002).

    CAS  Google Scholar 

  29. Ku, K. C. et al. Highly enhanced Curie temperature in low-temperature annealed (Ga,Mn)As epilayers. Appl. Phys. Lett. 82, 2302–2304 (2003).

    CAS  Google Scholar 

  30. Chiba, D., Takamura, K., Matsukura, F. & Ohno, H. Effect of low temperature annealing on (Ga,Mn)As trilayer structures. Appl. Phys. Lett. 82,3020–3022 (2003).

    CAS  Google Scholar 

  31. Yu, K. M. et al. Effect of the location of Mn sites in ferromagnetic Ga1–xMnxAs on its Curie temperature. Phys. Rev. B 65, 201303 (2002).

    Google Scholar 

  32. Matsukura, F., Ohno, H., Shen, A. & Sugawara, Y. Transport properties and origin of ferromagnetim in (Ga,Mn)As. Phys. Rev. B 57, R2037–R2040 (1998).

    CAS  Google Scholar 

  33. van Esch, A. et al. Interplay between the magnetic and transport properties in the III–V diluted magnetic semiconductor Ga1–xMnxAs, Phys. Rev. B 56, 13103–13112 (1997).

    CAS  Google Scholar 

  34. Schliemann, J. & MacDonald, A. H. Noncollinear ferromagnetism in (III,Mn)V semiconductors. Phys. Rev. Lett. 88, 137201 (2002).

    Google Scholar 

  35. Hayashi, T., Hashimoto, Y., Katsumoto, S. & Iye, Y. Effect of low-temperature annealing on transport and magnetism of diluted magnetic semiconductor (Ga,Mn)As. Appl. Phys. Lett. 78, 1691–1693 (2001).

    CAS  Google Scholar 

  36. Potashnik, S. J. et al. Effects of annealing time on defect-controlled ferromagnetism in GaMnAs. Appl. Phys. Lett. 79, 1495–1497 (2001).

    CAS  Google Scholar 

  37. Potashnik, S. J. et al. Saturated ferromagnetism and magnetization deficit in optimally annealed GaMnAs epilayers. Phys. Rev. B 66, 012408 (2002).

    Google Scholar 

  38. Stone, M. B. et al. Capping induced suppression of annealing effects in (Ga,Mn)As. Appl. Phys Lett. 83, 4568–4570 (2003).

    CAS  Google Scholar 

  39. Edmonds, K. W. et al. Mn interstitial diffusion in (Ga,Mn)As. Phys. Rev. Lett. 92, 037201 (2004).

    CAS  Google Scholar 

  40. Liu, X., Sasaki, Y. & Furdyna, J. K. Ferromagnetic resonance in Ga1–xMnxAs: effects of magnetic anisotropy. Phys. Rev. B 67, 205204 (2003).

    Google Scholar 

  41. Sawicki, M. et al. Temperature peculiarities of magnetic anisotropy in (Ga,Mn)As: the role of the hole concentration. J. Supercond. 16, 7–10 (2003).

    CAS  Google Scholar 

  42. Jungwirth, T. et al. DC-transport properties of ferromagnetic (Ga,Mn)As semiconductors. Appl. Phys. Lett. 83, 320–322 (2003).

    CAS  Google Scholar 

  43. Nagai, Y. et al. Spin polarization dependent far infrared absorption in Ga1–xMnxAs. Jpn J. Appl. Phys. 40, 6231–6234 (2001).

    CAS  Google Scholar 

  44. Singley, E. J., Kawakami, R., Awschalom, D. D. & Basov, D. N. Infrared probe of itinerant ferromagnetism in Ga1–xMnxAs. Phys. Rev. Lett. 89, 097203 (2002).

    CAS  Google Scholar 

  45. Beschoten, B. et al. Magnetic circular dichroism studies of carrier-induced ferromagnetism in Ga1–xMnxAs. Phys. Rev. Lett. 83, 3073–3076 (1999).

    CAS  Google Scholar 

  46. Okabayashi, J. et al. Angle-resolved photoemission study of Ga1–xMnxAs. Phys. Rev. B 64, 125304 (2001).

    Google Scholar 

  47. Braden, J. G. et al. Direct measurement of the spin polarization of the magnetic semiconductor (Ga,Mn)As. Phys. Rev. Lett. 91, 056602 (2003).

    CAS  Google Scholar 

  48. Dietl, T. & Ohno, H. Ferromagnetic III–V and II–VI semiconductors. Mater. Res. Soc. Bull. 28, 714–719 (2003).

    CAS  Google Scholar 

  49. Mahadevan, P. & Zunger, A. First-principles investigation of the assumptions underlying model-Hamiltonian approaches to ferromagnetism of 3d impurities in III–V semiconductors. Phys. Rev. B 69, 115211 (2004).

    Google Scholar 

  50. Giraud, R. et al. Ferromagnetic Ga1–xMnxN epilayers vs. antiferromagnetic GaMn3N clusters. Europhys. Lett. 65, 553–559 (2004).

    CAS  Google Scholar 

  51. Kronik, L., Jain, M. & Chelikowsky, J. R. Electronic structure and spin polarization of MnxGa1–xN. Phys. Rev. B 66, 041203 (2002).

    Google Scholar 

  52. Kulatov, E. et al. Electronic structure, magnetic ordering, and optical properties of GaN and GaAs doped with Mn. Phys. Rev. B 66, 045203 (2002).

    Google Scholar 

  53. Sanvito, S., Theurich, G. & Hill, N. A. Density functional calculations for III–V diluted ferromagnetic semiconductors: a review. J. Supercond. 15, 85–104 (2002).

    CAS  Google Scholar 

  54. Bouzerar, G., Kudrnovsky, J., Bergqvist, L. & Bruno, P. Ferromagnetism in diluted magnetic semiconductors: a comparison between ab initio mean-field, RPA, and Monte Carlo treatments. Phys. Rev. B 68, 081203 (2003).

    Google Scholar 

  55. Mahadevan, P. & Zunger, A. Ferromagnetism in Mn-doped GaAs due to substitutional-interstitial complexes. Phys. Rev. B 68, 075202 (2003).

    Google Scholar 

  56. van Schilfgaarde, M. & Mryasov, O. N. Anomalous exchange interactions in III–V dilute magnetic semiconductors. Phys. Rev. B 63, 233205 (2001).

    Google Scholar 

  57. Bergqvist, L. et al. Magnetic and electronic structure of (Ga1–xMnx)As. Phys. Rev. B 67, 205201 (2003).

    Google Scholar 

  58. Sandratskii, L. M., Bruno, P. & Kudrnovsky, J. On-site Coulomb interaction and the magnetism of (GaMn)N and (GaMn)As. Phys. Rev. B 69, 195203 (2004).

    Google Scholar 

  59. Shick, A. B., Kudrnovsky, J. & Drchal, V. Coulomb correlation effects on the electronic structure of III-V diluted magnetic semiconductors. Phys. Rev. B 69, 125207 (2003).

    Google Scholar 

  60. Dietl, T. et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019–1022 (2000).

    CAS  Google Scholar 

  61. Konig, J., Lin, H. H. & MacDonald, A. H. Theory of diluted magnetic semiconductor ferromagnetism. Phys. Rev. Lett. 84, 5628–5631 (2000).

    CAS  Google Scholar 

  62. Jungwirth, T. et al. Curie temperature trends in (III,Mn)V ferromagnetic semiconductors. Phys. Rev. B 66, 012402 (2002).

    Google Scholar 

  63. Schiemann, J., König, J., Lin, H.-H. & MacDonald, A. H. Limits on the Curie temperature of (III,Mn)V ferromagnetic semiconductors. Appl. Phys. Lett. 78, 1550–1552 (2001).

    Google Scholar 

  64. Priour, D. J. Jr, Hwang, E. H. & Das Sarma, S. Disordered RKKY lattice mean field theory for ferromagnetism in diluted magnetic semiconductors. Phys. Rev. Lett. 92, 117201 (2004).

    Google Scholar 

  65. Zener, C. Interaction between the d-shells in the transition metals. Phys. Rev. 81, 440–444 (1951).

    CAS  Google Scholar 

  66. Dietl, T., Haury, A. & d'Aubigne Y. M. Free carrier induced ferromagnetism in structures of diluted magnetic semiconductors. Phys. Rev. B 55, R3347–R3350 (1997).

    CAS  Google Scholar 

  67. Schliemann, J., König, J. & MacDonald, A. H. Monte Carlo study of ferromagnetism in (III,Mn)V semiconductors. Phys. Rev. B 64, 165201 (2001).

    Google Scholar 

  68. Berciu, M. & Bhatt, R. N. Effects of disorder on ferromagnetism in diluted magnetic semiconductors. Phys. Rev. Lett. 87, 107203 (2001).

    CAS  Google Scholar 

  69. Das Sarma, S., Hwang, E. H. & Kaminski, A. How to make semiconductors ferromagnetic: a first course on spintronics. Solid State Commun. 127, 99–107 (2003).

    CAS  Google Scholar 

  70. Fiete, G. A., Zarand, G. & Damle, K. Effective Hamiltonian for Ga1–xMnxAs in the dilute limit. Phys. Rev. Lett. 91, 097202 (2003).

    Google Scholar 

  71. Alvarez, G., Mayr, M. & Dagotto, E. Phase diagram of a model for diluted magnetic semiconductors beyond mean-field approximations. Phys. Rev. Lett. 89, 277202 (2002).

    Google Scholar 

  72. Yang, S.-R. & MacDonald, A. H. Disorder and ferromagnetism in diluted magnetic semiconductors. Phys Rev. B 67, 155202 (2003).

    Google Scholar 

  73. Calderon, M. J., Gomez-Santos, G. & Brey, L. Impurity-semiconductor band hybridization effects on the critical temperature of diluted magnetic semiconductors. Phys. Rev. B 66, 075218 (2002).

    Google Scholar 

  74. Burch, K. S., Stephens, J., Kawakami, R. K., Awschalom, D. D. & Basov, D. N. Ellipsometric study of the electronic structure of GaMnAs and LT-GaAs. cond-mat/0404304 (2004).

  75. Timm, C., Schafer, F. & von Oppen, F. Correlated defects, metal–insulator transition, and magnetic order in ferromagnetic semiconductors. Phys. Rev. Lett. 89, 137201 (2002).

    CAS  Google Scholar 

  76. Erwin, S. C. & Petukhov A. G. Self-compensation in manganese-doped ferromagnetic semiconductors. Phys. Rev. Lett. 89, 227201 (2002).

    Google Scholar 

  77. Shimizu, H., Miyamura, M. & Tanaka, M. Magneto-optical properties of a GaAs:MnAs hybrid structure sandwiched by GaAs/AlAs distributed Bragg reflectors: Enhanced magneto-optical effect and theoretical analysis. Appl. Phys. Lett. 78, 1523–1525 (2001).

    CAS  Google Scholar 

  78. Johnston-Halperin, E. et al. Independent electronic and magnetic doping in (Ga,Mn)As based digital ferromagnetic heterostructures. Phys. Rev. B 68, 165328 (2003).

    Google Scholar 

  79. Kawakami, R. K. et al. (Ga,Mn)As as a digital ferromagnetic heterostructure. Appl. Phys. Lett. 77, 2379–2381 (2000).

    CAS  Google Scholar 

  80. Eid, K. F. et al. Exchange biasing of the ferromagnetic semiconductor Ga1–xMnxAs. Appl. Phys. Lett. 85, 1556–1558 (2004).

    CAS  Google Scholar 

  81. Ohno, H. et al. Spontaneous splitting of ferromagnetic GaMnAs valence band observed by resonant tunneling spectroscopy. Appl. Phys. Lett. 73, 363–365 (1998).

    CAS  Google Scholar 

  82. Tanaka, M. & Higo, Y. Large tunneling magnetoresistance GaMnAs/AlAs/GaMnAs ferromagnetic semiconductor tunnel junctions. Phys. Rev. Lett. 87, 026602 (2001).

    Google Scholar 

  83. Chun, S. H. et al. Spin polarized tunneling in hybrid metal-semiconductor magnetic tunnel junctions. Phys. Rev. B 66, 100408 (2002).

    Google Scholar 

  84. Mattana, R. et al. Electrical detection of spin accumulation in a p-type GaAs quantum well. Phys. Rev. Lett. 90, 166601 (2003).

    CAS  Google Scholar 

  85. Ohno, Y. et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790–792 (1999).

    CAS  Google Scholar 

  86. Johnston-Halperin, E. et al. Spin-polarized Zener tunneling in GaMnAs. Phys. Rev. B 65, 041306 (2002).

    Google Scholar 

  87. Myers, R. C., Gossard, A. C. & Awschalom, D. D. Tunable spin polarization in III–V quantum wells with a ferromagnetic barrier. Phys. Rev. B 69, 161305 (2004).

    Google Scholar 

  88. Tang, H. X., Kawakami, R. K., Awschalom, D. D. & Roukes, M. L. Giant planar Hall effect in epitaxial (Ga,Mn)As devices. Phys. Rev. Lett. 90, 107201 (2003).

    CAS  Google Scholar 

  89. Zutic, I., Fabian, J. & Das Sarma, S. Phys. Rev. Lett. 88, 066603 (2003).

    Google Scholar 

  90. Samarth, N. et al. Hybrid ferromagnetic/semiconductor heterostructures for spintronics. Solid State Commun. 127, 173–179 (2003).

    CAS  Google Scholar 

  91. Flatte, M. E. & Vignale, G. Unipolar spin diodes and transistors. Appl. Phys. Lett. 78, 1273–1275 (2001).

    CAS  Google Scholar 

  92. Ruster, C. et al. Very large magnetoresistance in lateral ferromagnetic (Ga,Mn)As wires with nanoconstrictions. Phys. Rev. Lett. 91, 216602 (2003).

    CAS  Google Scholar 

  93. Dhar, S. et al. Origin of high-temperature ferromagnetism in (Ga,Mn)N layers grown on 4H–SiC(0001) by reactive molecular-beam epitaxy. Appl. Phys. Lett. 82, 2077–2079 (2003).

    CAS  Google Scholar 

  94. Shinde, S. R., et al. Co-occurrence of superparamagnetism and anomalous Hall effect in highly reduced cobalt doped rutile TiO2 films. Phys. Rev. Lett. 92, 166601 (2004).

    CAS  Google Scholar 

Download references

Acknowledgements

This research has been supported by DARPA, ONR, the Welch Foundation and the National Science Foundation. We are also grateful to the many collaborators and colleagues whose views and insights we imperfectly reflect.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. H. MacDonald, P. Schiffer or N. Samarth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacDonald, A., Schiffer, P. & Samarth, N. Ferromagnetic semiconductors: moving beyond (Ga,Mn)As. Nature Mater 4, 195–202 (2005). https://doi.org/10.1038/nmat1325

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1325

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing