Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Freely suspended nanocomposite membranes as highly sensitive sensors

Abstract

Highly sensitive sensor arrays are in high demand for prospective applications in remote sensing and imaging. Measuring microscopic deflections of compliant micromembranes and cantilevers is developing into one of the most versatile approaches for thermal, acoustic and chemical sensing. Here, we report on an innovative fabrication of compliant nanocomposite membranes with nanoscale thickness showing extraordinary sensitivity and dynamic range, which makes them candidates for a new generation of membrane-based sensor arrays. These nanomembranes with a thickness of 25–70 nm, which can be freely suspended over large (hundred micrometres) openings are fabricated with molecular precision by time-efficient, spin-assisted layer-by-layer assembly. They are designed as multilayered molecular composites made of a combination of polymeric monolayers and a metal nanoparticle intralayer. We demonstrate that these nanocomposite membranes possess unparalleled sensitivity and a unique autorecovering ability. The membrane nanostructure that is responsible for these outstanding properties combines multilayered polymer/nanoparticle organization, high polymer-chain orientation, and a pre-stretched state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A model of microstructure of the nanocomposite membrane with a gold nanoparticle central layer sandwiched between three polymer bilayers.
Figure 2: Characterizations of freely suspended nanocomposite membrane containing gold nanoparticles.
Figure 3: Bulging test of the 600 μm freely suspended nanocomposite membrane monitored by its interference pattern.
Figure 4: Mechanical testing of membranes.
Figure 5: Pressure–temperature sensitivity of freely suspended 9G9 membrane of 600 μm diameter in comparison with a silicon membrane of the same diameter.
Figure 6: Autorecovery of the freely suspended 9G9 membrane subjected to high pressure and long loading time.

Similar content being viewed by others

References

  1. Rogalski, A. Infrared detectors: status and trends. Progr. Quant. Electron. 27, 59–210 (2003).

    Article  CAS  Google Scholar 

  2. Defay, E., Millon, C., Malhaire, C. & Barbier, D. PZT thin films integration for the realization of a high sensitivity pressure microsensor based on a vibrating membrane. Sens. Actuat. A 99, 64–67 (2002).

    Article  CAS  Google Scholar 

  3. Hedrich, F., Billat, S. & Lang, W. Structuring of membrane sensors using sacrificial porous silicon. Sens. Actuat. A 84, 315–323 (2000).

    Article  CAS  Google Scholar 

  4. Davidson, J.L., Wur, D.R., Kang, W.P., Kinser, D.L. & Kerns, D.V. Polycrystalline diamond pressure microsensor. Diam. Related Mater. 5, 86–92 (1996).

    Article  CAS  Google Scholar 

  5. Timoshenko, S. & Woinowsky-Krieger, S. Theory of Plates and Shells (McGraw-Hill, New York, 1959).

    Google Scholar 

  6. Chévrier, J.B., Baert, K. & Slater, T. An infrared pneumatic detector made by micromachining technology. J. Micromech. Microeng. 5, 193–195 (1995).

    Article  Google Scholar 

  7. Yamashita, K., Murata, A. & Okuyama, M. Miniaturized infrared sensor using silicon diaphragm based on Golay cell. Sens. Actuat. A 66, 29–32 (1998).

    Article  CAS  Google Scholar 

  8. Lee, D.R. et al. X-ray scattering from freestanding polymer films with geometrically curved surfaces. Phys. Rev. Lett. 90, 185503 (2003).

    Article  CAS  Google Scholar 

  9. Cuvillier, N., Petkova, V., Nedyalkov, M., Millet, F. & Benattar, J.-J. Protein insertion within a biological freestanding film. Physica B 283, 1–5 (2000).

    Article  CAS  Google Scholar 

  10. Yablonskii, S.V., Nakano, K., Mikhailov, A.S., Ozaki, M. & Yoshino K. Thermal photodetector using freely suspended liquid-crystal films. Jpn J. Appl. Phys. 42, 198–201 (2003).

    Article  CAS  Google Scholar 

  11. Goedel, W.A. & Heger, R. Elastomeric suspended membranes generated via Langmuir-Blodgett transfer. Langmuir 14, 3470–3474 (1998).

    Article  CAS  Google Scholar 

  12. Kotov, N.A. Ordered layered assemblies of nanoparticles. Mater. Res. Soc. Bull. 26, 992–997 (2001).

    Article  CAS  Google Scholar 

  13. Decher, G. & Schlenoff, J.B. (eds) Multilayer Thin Films (Wiley-VCH, Weinheim, 2003).

    Google Scholar 

  14. Decher, G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277, 1232–1237 (1997).

    Article  CAS  Google Scholar 

  15. Lvov, Y., Decher, G. & Möhwald, H. Assembly, structural characterization, and thermal behavior of layer-by-layer deposited ultrathin films of poly(vinyl sulfate) and poly(allylamine). Langmuir 9, 481–486 (1993).

    Article  CAS  Google Scholar 

  16. Tsukruk, V.V. Dendritic macromolecules at interfaces. Adv. Mater. 10, 253–257 (1998).

    Article  CAS  Google Scholar 

  17. Cho, J., Char, K., Hong, J.-D. & Lee, K.-B. Fabrication of highly ordered multilayer films using a spin self-assembly method. Adv. Mater. 13, 1076–1078 (2001).

    Article  CAS  Google Scholar 

  18. Chiarelli, P.A. et al. Controlled fabrication of polyelectrolyte multilayer thin films using spin-assembly. Adv. Mater. 13, 1167–1171 (2001).

    Article  CAS  Google Scholar 

  19. Jiang, C., Markutsya S. & Tsukruk, V.V. Collective and individual plasmon resonances in nanoparticle films obtained by spin-assisted layer-by-layer assembly. Langmuir 20, 882–890 (2004).

    Article  CAS  Google Scholar 

  20. Mamedov, A.A. & Kotov, N.A. Free-standing layer-by-layer assembled films of magnetite nanoparticles. Langmuir 16, 5530–5533 (2000).

    Article  CAS  Google Scholar 

  21. Mamedov, A.A. et al. Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. Nature Mater. l, 190–194 (2002).

    Article  Google Scholar 

  22. Jiang, C., Markutsya, S. & Tsukruk, V.V. Compliant, robust, and truly nanoscale free-standing multilayer films fabricated using spin-assisted layer-by-layer assembly. Adv. Mater. 16, 157–161 (2004).

    Article  CAS  Google Scholar 

  23. Neugebauer, C.A., Newkirk, J.B. & Vermilyea, D.A. Structure and Properties of Thin Solid Films (Wiley, New York, 1959).

    Google Scholar 

  24. Jones, R. & Wykes, C. Holographic and Speckle Interferometry: A Discussion of the Theory, Practice and Application of the Techniques (Cambridge Univ. Press, New York, 1983).

    Google Scholar 

  25. Poilane, C., Delobelle, P., Lexcellent, C., Hayashi, S. & Tobushi, H. Analysis of the mechanical behavior of shape memory polymer membranes by nanoindentation, bulging and point membrane deflection tests. Thin Solid Films 379, 156–165 (2000).

    Article  CAS  Google Scholar 

  26. Sperling, L.H. Polymeric Multicomponent Materials 37 (Wiley, New York, 1997).

    Google Scholar 

  27. Kovalev, A., Shulha, H., LeMieux, M., Myshkin, N. & Tsukruk V.V. Nanomechanical probing of layered nanoscale polymer films with atomic force microscopy. J. Mater. Res. 19, 716–728 (2004).

    Article  CAS  Google Scholar 

  28. Tsukruk, V.V., Shulha, H. & Zhai X. Nanoscale stiffness of individual dendritic molecules and their aggregates. Appl. Phys. Lett. 82, 907–909 (2003).

    Article  CAS  Google Scholar 

  29. Yamagata, Y. & Shiratori, S. Evaluation of electrical characteristics of the layer-by-layer self-assembled films after the various annealing temperatures. Thin Solid Films 438–439, 238–242 (2003).

    Article  Google Scholar 

  30. Gao, C., Leporatti, S., Moya, S., Donath, E. & Möhwald, H. Stability and mechanical properties of polyelectrolyte capsules obtained by stepwise assembly of PSS and PAH onto melamine resin particles. Langmuir 17, 3491–3495 (2001).

    Article  CAS  Google Scholar 

  31. Dubreuil, F., Elsner, N. & Fery, A. Elastic properties of polyelectrolyte capsules studied by atomic-force microscopy and RICM. Eur. Phys. J. E 12, 215–221 (2003).

    Article  CAS  Google Scholar 

  32. Lulevich, V.V., Radtchenko, I.L., Sukhorukov, G.B. & Vinogradova, O.I. Deformation properties of nonadhesive polyelectrolyte microcapsules studied with atomic force microscope. J. Phys. Chem. 107, 2735–2740 (2003).

    Article  CAS  Google Scholar 

  33. Vinogradova, O.I., Andrienko, D., Lulevich, V.V., Nordschild, S. & Sukhorukov, G.B. Young's modulus of polyelectrolyte multilayers from microcapsule swelling. Macromolecules 37, 1113–1117 (2004).

    Article  CAS  Google Scholar 

  34. Mermut, O., Lefebvre, J., Gray, D.G. & Barrett, C.J. Structural and mechanical properties of polyelectrolyte multilayer films studied by AFM. Macromolecules 36, 8819–8824 (2003).

    Article  CAS  Google Scholar 

  35. Fery, A., Dubreuil, F. & Möhwald, H. Mechanics of artificial microscapsules. New J. Phys. 6, 18 (2004).

    Article  Google Scholar 

  36. Vogt, B.D., Soles, C.L., Lee, H., Lin, E.K. & Wu, W. Moisture absorption and absorption kinetics in polyelectrolyte films: influence on film thickness. Langmuir 20, 1453–1458 (2004).

    Article  CAS  Google Scholar 

  37. Vlassak, J.J. & Nix, W.D. A new bulge test technique for the determination of Young's modulus and Poisson's ratio of thin films. J. Mater. Res. 7, 3242–3249 (1992).

    Article  CAS  Google Scholar 

  38. White, S.R. et al. Autonomic healing of polymer composites. Nature 409, 794–797 (2001).

    Article  CAS  Google Scholar 

  39. Tsukruk, V.V. et al. Electrostatic deposition of polyionic mono/bilayers on charged surfaces. Macromolecules 30, 6615–6625 (1997).

    Article  CAS  Google Scholar 

  40. Prest, W.M. & Luca, D.J. The origin of the optical anisotropy of solvent cast polymer films. J. Appl. Phys. 50, 6067–6071 (1979).

    Article  CAS  Google Scholar 

  41. Law, C.W., Wong, K.S., Yang, Z., Horsburgh, K.S. & Monkman A.P. Observation of in-plane optical anisotropy of spin-cast rigid-rod electroluminescent polymer films. Appl. Phys. Lett. 76, 1416–1418 (2000).

    Article  CAS  Google Scholar 

  42. Chiarelli, P.A. et al. Polyelectrolyte spin-assembly. Langmuir 18, 168–173 (2002).

    Article  CAS  Google Scholar 

  43. Lee, S.-S., Lee, K.-B. & Hong, J.-D. Evidence for spin coating electrostatic self-assembly of polyelectrolytes. Langmuir 19, 7592–7596 (2003).

    Article  CAS  Google Scholar 

  44. Tang, Z., Kotov, N., Magonov, S. & Ozturk, B. Nanostructured artificial nacre. Nature Mater. 2, 413–418 (2003).

    Article  CAS  Google Scholar 

  45. Francis, L.F., McCormick, A.V., Vaessen, D.M. & Payne, J.A. Development and measurement of stress in polymer coatings. J. Mater. Sci. 37, 4717–4731 (2002).

    Article  CAS  Google Scholar 

  46. Hua, T., Cui, T. & Lvov, Yu. M. Ultrathin cantilevers based on polymer-ceramic nanocomposite assembled through LbL adsorption. Nano Lett. 4, 823–825 (2004).

    Article  CAS  Google Scholar 

  47. Zheng, H., Lee, I., Rubner, M. & Hammond, P. Controlled cluster size in patterned particle arrays via directed adsorption on confined surfaces. Adv. Mater. 14, 573–577 (2002).

    Google Scholar 

  48. Grabar, K.C., Freeman, R.G., Hommer, M.B. & Natan, M.J. Preparation and characterization of Au colloid monolayers. Anal. Chem. 67, 735–743 (1995).

    Article  CAS  Google Scholar 

  49. Tsukruk, V.V. Scanning probe microscopy of polymer surfaces. Rubber Chem. Technol. 70, 430–475 (1997).

    Article  CAS  Google Scholar 

  50. Hazel, J.L. & Tsukruk V.V. Spring constants of composite ceramic/gold cantilevers for scanning probe microscopy. Thin Solid Films 339, 249–257 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation, CTS-0210005 Grant and the Air Force Office of Science Research, F496200210205 Contract. The authors thank X. Tan and A. Bastawros, Iowa State University and M. R. Beggley, University of Virginia for valuable discussion, F. Laabs and M. Kramer, the Department of Energy Ames Laboratory for access to TEM and assistance with TEM studies, and B. Rybak for assistance with SEM studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir V. Tsukruk.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, C., Markutsya, S., Pikus, Y. et al. Freely suspended nanocomposite membranes as highly sensitive sensors. Nature Mater 3, 721–728 (2004). https://doi.org/10.1038/nmat1212

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1212

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing