Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Oxidation-responsive polymeric vesicles

Abstract

Vesicles formed in water by synthetic macro-amphiphiles have attracted much attention as nanocontainers having properties that extend the physical and chemical limits of liposomes. We sought to develop ABA block copolymeric amphiphiles that self-assemble into unilamellar vesicles that can be further oxidatively destabilized. We selected poly(ethylene glycol) (PEG) as the hydrophilic A blocks, owing to its resistance to protein adsorption and low toxicity. As hydrophobic B blocks, we selected poly(propylene sulphide) (PPS), owing to its extreme hydrophobicity, its low glass-transition temperature, and most importantly its oxidative conversion from a hydrophobe to a hydrophile, poly(propylene sulphoxide) and ultimately poly(propylene sulphone). This is the first example of the use of oxidative conversions to destabilize such carriers. This new class of oxidation-responsive polymeric vesicles may find applications as nanocontainers in drug delivery, biosensing and biodetection.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cryo-TEM of EG16PS50EG16 polymersomes.
Figure 2: Turbidity measurement on PEG–PPS–PEG polymersome suspensions during oxidation in excess H2O2.
Figure 3: 1H-NMR spectra of PEG–PPS–PEG polymersome suspensions in D2O before and after oxidation.
Figure 4: Cryo-TEM of PEG–PPS–PEG polymersome suspensions after exposure to H2O2.
Figure 5: 1H-PGSE NMR plots for polymersomes, oxidized block copolymer and reference PEG3400.
Figure 6: Two-dimensional NMR spectra of the oxidized block copolymer suspension in D2O.

Similar content being viewed by others

References

  1. Discher, B.M. et al. Polymersomes: Tough vesicles from diblock copolymers. Science 284, 1143–1146 (1999).

    Article  CAS  Google Scholar 

  2. Nardin, C., Hirt, T., Leukel, J. & Meier, W. Polymerized ABA triblock copolymer vesicles. Langmuir 16, 1035–1041 (2000).

    Article  CAS  Google Scholar 

  3. Discher, D.E. & Eisenberg, A. Polymer vesicles. Science 297, 967–973 (2002).

    Article  CAS  Google Scholar 

  4. Sommerdijk, N.A.J.M., Holder, S.J., Hiorns, R.C., Jones, R.G. & Nolte, R.J.M. Self-assembled structures from an amphiphilic multiblock copolymer containing rigid semiconductor segments. Macromolecules 33, 8289–8294 (2000).

    Article  CAS  Google Scholar 

  5. Cornelissen, J.J.L.M., Fischer, M., Sommerdijk, N.A.J.M. & Nolte, R.J.M. Helical superstructures from charged poly(styrene)-poly(isocyanodipeptide) block copolymers. Science 280, 1427–1430 (1998).

    Article  CAS  Google Scholar 

  6. Bermudez, H., Brannan, A.K., Hammer, D.A., Bates, F.S. & Discher, D.E. Molecular weight dependence of polymersome membrane structure, elasticity, and stability. Macromolecules 35, 8203–8208 (2002).

    Article  CAS  Google Scholar 

  7. Aranda-Espinoza, H., Bermudez, H., Bates, F.S. & Discher, D.E. Electromechanical limits of polymersomes. Phys. Rev. Lett. 8720, 208301 (2001).

    Article  Google Scholar 

  8. Dimova, R., Seifert, U., Pouligny, B., Förster, S. & Döbereiner, H.G. Hyperviscous diblock copolymer vesicles. Eur. Phys. J. 7, 241–250 (2002).

    CAS  Google Scholar 

  9. Lee, J.C.M. et al. Preparation, stability, and in vitro performance of vesicles made with diblock copolymers. Biotechnol. Bioeng. 73, 135–145 (2001).

    Article  CAS  Google Scholar 

  10. Förster, S. et al. Lyotropic phase morphologies of amphiphilic block copolymers. Macromolecules 34, 4610–4623 (2001).

    Article  Google Scholar 

  11. Hajduk, D.A., Kossuth, M.B., Hillmyer, M.A. & Bates, F.S. Complex phase behavior in aqueous solutions of poly(ethylene oxide)-poly(ethylethylene) block copolymers. J. Phys. Chem. B 102, 4269–4276 (1998).

    Article  CAS  Google Scholar 

  12. Lasic, D.D. & Needham, D. The “Stealth” Liposome: A Prototypical Biomaterial. Chem. Rev. 95, 2601–2628 (1995).

    Article  CAS  Google Scholar 

  13. Allen, T.M., Sapra, P., Moase, E., Moreira, J. & Iden, D. Adventures in targeting. J Lipos. Res. 12, 5–12 (2002).

    Article  CAS  Google Scholar 

  14. Torchilin, V.P., Rammohan, R., Weissig, V. & Levchenko, T.S. Tat peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc. Natl Acad. Sci. USA 98, 8786–8791 (2001).

    Article  CAS  Google Scholar 

  15. Halliwell, B., Clement, M.V. & Long, L.H. Hydrogen peroxide in the human body. FEBS Lett. 486, 10–13 (2000).

    Article  CAS  Google Scholar 

  16. Ohshima, H., Tatemichi, M. & Sawa, T. Chemical basis of inflammation-induced carcinogenesis*1. Arch. Biochem. Biophys. 417, 3–11 (2003).

    Article  CAS  Google Scholar 

  17. Napoli, A., Tirelli, N., Kilcher, G. & Hubbell, J.A. New synthetic methodologies for amphiphilic multiblock copolymers of ethylene glycol and propylene sulfide. Macromolecules 34, 8913–8917 (2001).

    Article  CAS  Google Scholar 

  18. Schillen, K., Bryskhe, K. & Mel'nikova, Y. Vesicles Formed from a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer in dilute aqueous solution. Macromolecules 32, 6885–6888 (1999).

    Article  CAS  Google Scholar 

  19. Nicol, E., Nicolai, T. & Durand, D. Dynamics of poly(propylene sulfide) studied by dynamic mechanical measurments and dielectric spectroscopy. Macromolecules 32, 7530–7536 (1999).

    Article  CAS  Google Scholar 

  20. Napoli, A., Tirelli, N., Wehrli, E. & Hubbell, J.A. Lyotropic behavior in water of amphiphilic aba triblock copolymers based on poly(propylene sulfide) and poly(ethylene glycol). Langmuir 18, 8324–8329 (2002).

    Article  CAS  Google Scholar 

  21. Won, Y.Y., Brannan, A.K., Davis, H.T. & Bates, F.S. Cryogenic transmission electron microscopy (cryo-tem) of micelles and vesicles formed in water by polyethylene oxide)-based block copolymers. J. Phys. Chem. B 106, 3354–3364 (2002).

    Article  CAS  Google Scholar 

  22. Roberts, M.J., Bentley, M.D. & Harris, J.M. Chemistry for Peptide and protein PEGylation. Adv. Drug Deliv. Rev. 54, 459–476 (2002).

    Article  CAS  Google Scholar 

  23. Yamaoka, T., Tabata, Y. & Ikada, Y. Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J. Pharm. Sci. 83, 601–606 (1994).

    Article  CAS  Google Scholar 

  24. Neuhaus, D. & Williamson, M.P. The Nuclear Overhauser Effect in Structural and Conformational Analysis (VCH, New York, 1989).

    Google Scholar 

  25. Grindel, J.M., Jaworski, T., Piraner, O., Emanuele, R.M. & Balasubramanian, M. Distribution, metabolism, and excretion of a novel surface-active agent, purified poloxamer 188, in rats, dogs, and humans. J. Pharm. Sci. 91, 1936–1947 (2002).

    Article  CAS  Google Scholar 

  26. Fukami, A. & Adachi, K. On a new preparation method of a self-perforated micro plastic grid. J. Electron. Microsc. 13, 52 (1964).

    Google Scholar 

  27. Dubochet, J. et al. Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21, 129–228 (1988).

    Article  CAS  Google Scholar 

  28. Egelhaaf, S.U., Schurtenberger, P. & Muller, M. New controlled environment vitrification system for cryo-transmission electron microscopy: design and application to surfactant solutions. J. Microsc-Oxford 200, 128–139 (2000).

    Article  CAS  Google Scholar 

  29. Claridge, T.D.W. in High-Resolution NMR Techniques in Organic Chemistry (eds. Baldwin, J.E., Williams, F.R.S. & Williams, R.M.) Ch. 5 (Elsevier Science, Oxford, 1999).

    Google Scholar 

  30. Price, W.S. Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion: Part II. Experimental aspects. Concepts Magn. Res. 10, 197–237 (1998).

    Article  CAS  Google Scholar 

  31. Price, W.S. Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion.1. Basic theory. Concepts Magn. Res. 9, 299–336 (1997).

    Article  CAS  Google Scholar 

  32. Boss, B.D., Stejskal, E.O. & Ferry, J.D. Self-diffusion in high molecular weight polyisobutylene-benzene mixtures determined by pulsed-gradient spin-echo method. J. Phys. Chem.-US 71, 1501–1506 (1967).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported in part by a grant from the Research Commission of the Swiss Federal Institute of Technology. Authors acknowledge Anita Saraf for the preliminary experimental work on copolymer oxidation, and Heinz Rüegger at ETH Zurich for discussions on NMR results.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nicola Tirelli or Jeffrey A. Hubbell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information, Fig. S1

Supplementary Information, Fig. S2 (PDF 140 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Napoli, A., Valentini, M., Tirelli, N. et al. Oxidation-responsive polymeric vesicles. Nature Mater 3, 183–189 (2004). https://doi.org/10.1038/nmat1081

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1081

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing