Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dexamethasone induction of hypertension and diabetes is PPAR-α dependent in LDL receptor–null mice

Abstract

Hypertension and diabetes are common side effects of glucocorticoid treatment. To determine whether peroxisome proliferator–activated receptor-α (PPAR-α) mediates these sequelae, mice deficient in low-density lipoprotein receptor (Ldlr−/−), with (Ppara+/+) or without (Ppara−/−) PPAR-α, were treated chronically with dexamethasone. Ppara+/+, but not Ppara−/−, mice developed hyperglycemia, hyperinsulinemia and hypertension. Similar effects on glucose metabolism were seen in a different model using C57BL/6 mice. Hepatic gluconeogenic gene expression was increased and insulin-mediated suppression of endogenous glucose production was less effective in dexamethasone-treated Ppara+/+ mice. Adenoviral reconstitution of PPAR-α in the livers of nondiabetic, normotensive, dexamethasone-treated Ppara−/− mice induced hyperglycemia, hyperinsulinemia and increased gluconeogenic gene expression. It also increased blood pressure, renin activity, sympathetic nervous activity and renal sodium retention. Human hepatocytes treated with dexamethasone and the PPAR-α agonist Wy14,643 induced PPARA and gluconeogenic gene expression. These results identify hepatic activation of PPAR-α as a mechanism underlying glucocorticoid-induced insulin resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Impaired glucose tolerance and insulin responsiveness in DEX-treated Ppara+/+, but not Ppara−/−, mice.
Figure 2: Ppara and Ppargc1 expression after infusion in DEX-treated Ppara−/−Ldlr−/− mice.
Figure 3: DEX elevates blood pressure and promotes insulin resistance in mice through PPAR-α.
Figure 4: Expression of Ppara and hepatic gluconeogenesis genes.
Figure 5: Gene expression in human hepatocytes, as determined by quantitative RT-PCR.

Similar content being viewed by others

References

  1. Arner, P., Gunnarsson, R., Blomdahl, S. & Groth, C.G. Some characteristics of steroid diabetes: a study in renal-transplant recipients receiving high-dose corticosteroid therapy. Diabetes 6, 23–25 (1983).

    CAS  Google Scholar 

  2. Hricik, D.E., Bartucci, M.R., Moir, E.J., Mayes, J.T. & Schulak, J.A. Effects of steroid withdrawal on posttransplant diabetes mellitus in cyclosporine-treated renal transplant recipients. Transplantation 51, 374–377 (1991).

    Article  CAS  Google Scholar 

  3. Williams, L.C. & Nesbitt, L.T. Jr. Update on systemic glucocorticosteroids in dermatology. Dermatol. Clin. 19, 63–77 (2001).

    Article  CAS  Google Scholar 

  4. Howlett, T.A., Rees, L.H. & Besser, G.M. Cushing's syndrome. Clin. Endocrinol. Metab. 14, 911–945 (1985).

    Article  CAS  Google Scholar 

  5. Rask, E. et al. Tissue-specific dysregulation of cortisol metabolism in human obesity. J. Clin. Endocrinol. Metab. 86, 1418–1421 (2001).

    Article  CAS  Google Scholar 

  6. Duclos, M. et al. Fat distribution in obese women is associated with subtle alterations of the hypothalamic-pituitary-adrenal axis activity and sensitivity to glucocorticoids. Clin. Endocrinol. 55, 447–454 (2001).

    Article  CAS  Google Scholar 

  7. Levitt, N.S. et al. Impaired glucose tolerance and elevated blood pressure in low birth weight, nonobese, young South African adults: early programming of cortisol axis. J. Clin. Endocrinol. Metab. 85, 4611–4618 (2000).

    CAS  PubMed  Google Scholar 

  8. Andrew, R., Gale, C.R., Walker, B.R., Seckl, J.R. & Martyn, C.N. Glucocorticoid metabolism and the metabolic syndrome: associations in an elderly cohort. Exp. Clin. Endocrinol. Diabetes 110, 284–290 (2002).

    Article  CAS  Google Scholar 

  9. Tauchmanova, T. et al. Patients with subclinical Cushing's syndrome due to adrenal adenoma have increased cardiovascular risk. J. Clin. Endocrinol. Metab. 87, 4872–4878 (2002).

    Article  CAS  Google Scholar 

  10. Masuzaki, H. et al. A transgenic model of visceral obesity and the metabolic syndrome. Science 294, 2166–2170 (2001).

    Article  CAS  Google Scholar 

  11. Ginsberg, H.N. Insulin resistance and cardiovascular disease. J. Clin. Invest. 106, 453–458 (2000).

    Article  CAS  Google Scholar 

  12. Djurhuus, C.B. et al. Effects of cortisol on lipolysis and regional interstitial glycerol levels in humans. Am. J. Physiol. 283, E172–E177 (2002).

    CAS  Google Scholar 

  13. Ekstrand, A., Saloranta, C., Ahonen, J., Gronhagen-Riska, C. & Groop, L.C. Reversal of steroid-induced insulin resistance by a nicotinic-acid derivative in man. Metabolism 41, 692–697 (1992).

    Article  CAS  Google Scholar 

  14. Berger, J. & Moller, D.E. The mechanisms of action of PPARs. Annu. Rev. Med. 53, 409–435 (2002).

    Article  CAS  Google Scholar 

  15. Lemberger, T. et al. Regulation of the peroxisome proliferator-activated receptor alpha gene by glucocorticoids. J. Biol. Chem. 269, 24527–24530 (1994).

    CAS  PubMed  Google Scholar 

  16. Lemberger, T. et al. Expression of the peroxisome proliferator-activated receptor alpha gene is stimulated by stress and follows a diurnal rhythm. J. Biol. Chem. 271, 1764–1769 (1996).

    Article  CAS  Google Scholar 

  17. Tordjman, K. et al. PPARα deficiency reduces insulin resistance and atherosclerosis in apoE-null mice. J. Clin. Invest. 107, 1025–1034 (2001).

    Article  CAS  Google Scholar 

  18. Guerre-Millo, M. et al. PPAR-alpha-null mice are protected from high-fat diet-induced insulin resistance. Diabetes 50, 2809–2814 (2001).

    Article  CAS  Google Scholar 

  19. Towler, D.A., Bidder, M., Latifi, T., Coleman, T. & Semenkovich, C.F. Diet-induced diabetes activates an osteogenic gene regulatory program in the aortas of low density lipoprotein receptor-deficient mice. J. Biol. Chem. 273, 30427–30434 (1998).

    Article  CAS  Google Scholar 

  20. Schreyer, S.A., Vick, C., Lystig, T.C., Mystkowski, P. & LeBoeuf, R.C. LDL receptor but not apolipoprotein E deficiency increases diet-induced obesity and diabetes in mice. Am. J. Physiol. 282, E207–E214 (2002).

    CAS  Google Scholar 

  21. Tordjman, K. et al. PPARalpha suppresses insulin secretion and induces UCP2 in insulinoma cells. J. Lipid Res. 43, 936–943 (2002).

    CAS  PubMed  Google Scholar 

  22. Yoon, J.C. et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413, 131–138 (2001).

    Article  CAS  Google Scholar 

  23. Herzig, S. et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413, 179–183 (2001).

    Article  CAS  Google Scholar 

  24. Peters, J.M. et al. Alterations in lipoprotein metabolism in peroxisome proliferator-activated receptor α-deficient mice. J. Biol. Chem. 43, 27307–27312 (1997).

    Article  Google Scholar 

  25. Dirlewanger, M. et al. Effects of glucocorticoids on hepatic sensitivity to insulin and glucagon in man. Clin. Nutr. 19, 29–34 (2000).

    Article  CAS  Google Scholar 

  26. Tappy, L. et al. Mechanisms of dexamethasone-induced insulin resistance in healthy humans. J. Clin. Endocrinol. Metab. 79, 1063–1069 (1994).

    CAS  PubMed  Google Scholar 

  27. Goodpaster, B.H., Kelley, D.E., Wing, R.R., Meier, A. & Thaete, F.L. Effects of weight loss on regional fat distribution and insulin sensitivity in obesity. Diabetes 48, 839–847 (1999).

    Article  CAS  Google Scholar 

  28. Khani, S. & Tayek, J.A. Cortisol increases gluconeogenesis in humans: its role in the metabolic syndrome. Clin. Sci. 101, 739–747 (2001).

    Article  CAS  Google Scholar 

  29. Lawrence, J.W. et al. Differential gene regulation in human versus rodent hepatocytes by peroxisome proliferator-activated receptor (PPAR) alpha. PPAR alpha fails to induce peroxisome proliferation-associated genes in human cells independently of the level of receptor expression. J. Biol. Chem. 276, 31521–31527 (2001).

    Article  CAS  Google Scholar 

  30. Vidal-Puig, A. et al. Regulation of PPARγ gene expression by nutrition and obesity in rodents. J. Clin. Invest. 97, 2553–2561 (1996).

    Article  CAS  Google Scholar 

  31. Matsusue, K. et al. Liver-specific disruption of PPARgamma in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. J. Clin. Invest. 111, 737–747 (2003).

    Article  CAS  Google Scholar 

  32. Hermanowski-Vosatka, A. et al. PPARα agonists reduce 11β-hydroxysteroid dehydrogenase type 1 in the liver. Biochem. Biophys. Res. Comm. 279, 330–336 (2000).

    Article  CAS  Google Scholar 

  33. Kotelevtsev, Y. et al. 11beta-hydroxysteroid dehydrogenase type 1 knockout mice show attenuated glucocorticoid-inducible responses and resist hyperglycemia on obesity or stress. Proc. Natl. Acad. Sci. USA 94, 14924–14929 (1997).

    Article  CAS  Google Scholar 

  34. Kopf, D. et al. Insulin sensitivity and sodium excretion in normotensive offspring and hypertensive patients. Metabolism 50, 929–935 (2001).

    Article  CAS  Google Scholar 

  35. Orbach, J. & Andrews, W.H. Stimulation of afferent nerve terminals in the perfused rabbit liver by sodium salts of some long-chain fatty acids. Q. J. Exp. Physiol. Cogn. Med. Sci. 58, 267–274 (1973).

    CAS  PubMed  Google Scholar 

  36. Randich, A., Spraggins, D.S., Cox, J.E., Meller, S.T. & Kelm, G.R. Jejunal or portal vein infusions of lipids increase hepatic vagal afferent activity. NeuroReport 12, 3101–3105 (2001).

    Article  CAS  Google Scholar 

  37. Vacca, G., Chiorboli, E., Grossini, E. & Papillo, B. The effect of distension of the stomach on plasma renin activity in the anesthetized pig. Cardioscience 5, 261–267 (1994).

    CAS  PubMed  Google Scholar 

  38. Grekin, R.J., Vollmer, A.P. & Sider, R.S. Pressor effects of portal venous oleate infusion. A proposed mechanism for obesity hypertension. Hypertension 26, 193–198 (1995).

    Article  CAS  Google Scholar 

  39. Benthem, L. et al. Excess portal venous long-chain fatty acids induce syndrome X via HPA axis and sympathetic activation. Am. J. Physiol. 279, E1286–E1293 (2000).

    CAS  Google Scholar 

  40. Marshall, B.A. et al. Relative hypoglycemia and hyperinsulinemia in mice with heterozygous lipoprotein lipase (LPL) deficiency. Islet LPL regulates insulin secretion. J. Biol. Chem. 274, 27426–27432 (1999).

    Article  CAS  Google Scholar 

  41. Li, B. et al. Skeletal muscle respiratory uncoupling prevents diet-induced obesity and insulin resistance in mice. Nat. Med. 6, 1115–1120 (2000).

    Article  CAS  Google Scholar 

  42. Bernal-Mizrachi, C. et al. Respiratory uncoupling lowers blood pressure through a leptin-dependent mechanism in genetically obese mice. Arterioscler. Thromb. Vasc. Biol. 22, 961–968 (2002).

    Article  CAS  Google Scholar 

  43. Marshall, B.A., Hansen, P.A., Ensor, N.J., Ogden, M.A. & Mueckler, M. GLUT-1 or GLUT-4 transgenes in obese mice improve glucose tolerance but do not prevent insulin resistance. Am. J. Physiol. 276, E390–E400 (1999).

    Article  CAS  Google Scholar 

  44. Hawkins, M. et al. Discordant effects of glucosamine on insulin-stimulated glucose metabolism and phosphatidylinositol 3-kinase activity. J. Biol. Chem. 274, 31312–31319 (1999).

    Article  CAS  Google Scholar 

  45. Lehman, J.J. et al. Peroxisome proliferator-activated receptor (coactivator-1) promotes cardiac mitochondrial biogenesis. J. Clin. Invest. 106, 847–856 (2000).

    Article  CAS  Google Scholar 

  46. Heximer, S.P. et al. Hypertension and prolonged vasoconstrictor signaling in RGS2-deficient mice. J. Clin. Invest. 111, 445–452 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by National Institutes of Health grants HL58427 and AG20091, Clinical Nutrition Research Unit grant DK56341 and Diabetes Research and Training Center grant DK20579. C.B.-M. was supported by an American Diabetes Association–Johnson & Johnson Mentor-Based Postdoctoral Fellowship. We thank E. Bernal-Mizrachi and K.S. Polonsky for suggestions and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clay F Semenkovich.

Ethics declarations

Competing interests

D.P.K. is a scientific consultant for Merck Research Labs and gives talks supported by Merck. This work was not supported by or related to this affiliation.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernal-Mizrachi, C., Weng, S., Feng, C. et al. Dexamethasone induction of hypertension and diabetes is PPAR-α dependent in LDL receptor–null mice. Nat Med 9, 1069–1075 (2003). https://doi.org/10.1038/nm898

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm898

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing