Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Viral nanoparticles as tools for intravital vascular imaging

Abstract

A significant impediment to the widespread use of noninvasive in vivo vascular imaging techniques is the current lack of suitable intravital imaging probes. We describe here a new strategy to use viral nanoparticles as a platform for the multivalent display of fluorescent dyes to image tissues deep inside living organisms. The bioavailable cowpea mosaic virus (CPMV) can be fluorescently labeled to high densities with no measurable quenching, resulting in exceptionally bright particles with in vivo dispersion properties that allow high-resolution intravital imaging of vascular endothelium for periods of at least 72 h. We show that CPMV nanoparticles can be used to visualize the vasculature and blood flow in living mouse and chick embryos to a depth of up to 500 μm. Furthermore, we show that the intravital visualization of human fibrosarcoma-mediated tumor angiogenesis using fluorescent CPMV provides a means to identify arterial and venous vessels and to monitor the neovascularization of the tumor microenvironment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Labeling of CPMV particles with fluorescent dyes.
Figure 2: Fluorescent dye–conjugated CPMV particles enable visualization of vasculature intravitally and in fixed tissues.
Figure 3: Intravital fluorescence imaging of chick CAM vasculature and subcellular localization of CPMV.
Figure 4: Comparison of intravital vascular staining intensity over time in the chick embryo.
Figure 5: Evaluation of tumor angiogenesis in an intravital CAM/HT1080 fibrosarcoma model.

Similar content being viewed by others

References

  1. McDonald, D.M. & Choyke, P.L. Imaging of angiogenesis: from microscope to clinic. Nat. Med. 9, 713–725 (2003).

    CAS  PubMed  Google Scholar 

  2. Yang, C.S. et al. Nanoparticle-based in vivo investigation on blood-brain barrier permeability following ischemia and reperfusion. Anal. Chem. 76, 4465–4471 (2004).

    CAS  PubMed  Google Scholar 

  3. Josephson, L., Kircher, M.F., Mahmood, U., Tang, Y. & Weissleder, R. Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes. Bioconjug. Chem. 13, 554–560 (2002).

    CAS  PubMed  Google Scholar 

  4. Lee, P.J. & Peyman, G.A. Visualization of the retinal and choroidal microvasculature by fluorescent liposomes. Methods Enzymol. 373, 214–233 (2003).

    CAS  PubMed  Google Scholar 

  5. Rizzo, V., Steinfeld, R., Kyriakides, C. & DeFouw, D.O. The microvascular unit of the 6-day chick chorioallantoic membrane: a fluorescent confocal microscopic and ultrastructural morphometric analysis of endothelial permselectivity. Microvasc. Res. 46, 320–332 (1993).

    CAS  PubMed  Google Scholar 

  6. Jilani, S.M. et al. Selective binding of lectins to embryonic chicken vasculature. J. Histochem. Cytochem. 51, 597–604 (2003).

    CAS  PubMed  Google Scholar 

  7. Pardanaud, L., Altmann, C., Kitos, P., Dieterlen-Lievre, F. & Buck, C.A. Vasculogenesis in the early quail blastodisc as studied with a monoclonal antibody recognizing endothelial cells. Development 100, 339–349 (1987).

    CAS  PubMed  Google Scholar 

  8. Larson, D.R. et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300, 1434–1436 (2003).

    CAS  PubMed  Google Scholar 

  9. Kirchner, C. et al. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett. 5, 331–338 (2005).

    CAS  PubMed  Google Scholar 

  10. Goldbach, R. & Van Kammen, A. Structure replication and expression of the bipartite genome of Cowpea mosaic virus. in Molecular Plant Virology (ed. Davies, J.) 83–120 (CRC Press, Boca Raton, Florida, 1985).

    Google Scholar 

  11. Lomonossoff, G. & Shanks, M. The nucleotide sequence of Cowpea mosaic virus B RNA. EMBO J. 2, 2253–2258 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Porta, C. et al. Cowpea mosaic virus-based chimaeras. Effects of inserted peptides on the phenotype, host range, and transmissibility of the modified viruses. Virology 310, 50–63 (2003).

    CAS  PubMed  Google Scholar 

  13. Chatterji, A. et al. Chemical conjugation of heterologous proteins on the surface of Cowpea mosaic virus. Bioconjug. Chem. 15, 807–813 (2004).

    CAS  PubMed  Google Scholar 

  14. Lin, T. et al. The refined crystal structure of cowpea mosaic virus at 2.8 Å resolution. Virology 265, 20–34 (1999).

    CAS  PubMed  Google Scholar 

  15. Brennan, F.R., Jones, T.D. & Hamilton, W.D. Cowpea mosaic virus as a vaccine carrier of heterologous antigens. Mol. Biotechnol. 17, 15–26 (2001).

    CAS  PubMed  Google Scholar 

  16. Nicholas, B.L. et al. Characterization of the immune response to canine parvovirus induced by vaccination with chimaeric plant viruses. Vaccine 20, 2727–2734 (2002).

    CAS  PubMed  Google Scholar 

  17. Wang, Q., Kaltgrad, E., Lin, T., Johnson, J.E. & Finn, M.G. Natural supramolecular building blocks. Wild-type cowpea mosaic virus. Chem. Biol. 9, 805–811 (2002).

    CAS  PubMed  Google Scholar 

  18. Chatterji, A. et al. New addresses on an addressable virus nanoblock; uniquely reactive Lys residues on cowpea mosaic virus. Chem. Biol. 11, 855–863 (2004).

    CAS  PubMed  Google Scholar 

  19. Gref, R. et al. Poly(ethylene glycol)-coated nanospheres: potential carriers for intravenous drug administration. Pharm. Biotechnol. 10, 167–198 (1997).

    CAS  PubMed  Google Scholar 

  20. Seandel, M., Noack-Kunnmann, K., Zhu, D., Aimes, R.T. & Quigley, J.P. Growth factor-induced angiogenesis in vivo requires specific cleavage of fibrillar type I collagen. Blood 97, 2323–2332 (2001).

    CAS  PubMed  Google Scholar 

  21. Johnson, J., Lin, T. & Lomonossoff, G. Presentation of heterologous peptides on plant viruses: genetics, structure, and function. Annu. Rev. Phytopathol. 35, 67–86 (1997).

    CAS  PubMed  Google Scholar 

  22. Lin, T., Porta, C., Lomonossoff, G. & Johnson, J.E. Structure-based design of peptide presentation on a viral surface: the crystal structure of a plant/animal virus chimera at 2.8 Å resolution. Fold. Des. 1, 179–187 (1996).

    CAS  PubMed  Google Scholar 

  23. Lomonossoff, G.P. & Johnson, J.E. The synthesis and structure of comovirus capsids. Prog. Biophys. Mol. Biol. 55, 107–137 (1991).

    CAS  PubMed  Google Scholar 

  24. Rae, C. et al. Systemic trafficking of plant virus nanoparticles in mice via the oral route. Virology 343, 224–235 (2005).

    CAS  PubMed  Google Scholar 

  25. Tsourkas, A. et al. In vivo imaging of activated endothelium using an anti-VCAM-1 magnetooptical probe. Bioconjug. Chem. 16, 576–581 (2005).

    CAS  PubMed  Google Scholar 

  26. White, J.G., Amos, W.B. & Fordham, M. An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy. J. Cell Biol. 105, 41–48 (1987).

    CAS  PubMed  Google Scholar 

  27. Dessens, J.T. & Lomonossoff, G.P. Cauliflower mosaic virus 35S promoter-controlled DNA copies of cowpea mosaic virus RNAs are infectious on plants. J. Gen. Virol. 74, 889–892 (1993).

    CAS  PubMed  Google Scholar 

  28. Jones, E.A. et al. Dynamic in vivo imaging of postimplantation mammalian embryos using whole embryo culture. Genesis 34, 228–235 (2002).

    CAS  PubMed  Google Scholar 

  29. Zijlstra, A. et al. Collagenolysis-dependent angiogenesis mediated by matrix metalloproteinase-13 (collagenase-3). J. Biol. Chem. 279, 27633–27645 (2004).

    CAS  PubMed  Google Scholar 

  30. Hahm, B., Arbour, N. & Oldstone, M.B. Measles virus interacts with human SLAM receptor on dendritic cells to cause immunosuppression. Virology 323, 292–302 (2004).

    CAS  PubMed  Google Scholar 

  31. Sayle, R.A. & Milner-White, E.J. RASMOL: biomolecular graphics for all. Trends Biochem. Sci. 20, 374 (1995).

    CAS  PubMed  Google Scholar 

  32. Schwede, T., Kopp, J., Guex, N. & Peitsch, M.C. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 31, 3381–3385 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Reddy, V.S. et al. Virus Particle Explorer (VIPER), a website for virus capsid structures and their computational analyses. J. Virol. 75, 11943–11947 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by US National Institutes of Health grants R01 HL65738 and R21 HL72270 (to H.S.), AI47823, CA112075 and N01-CO-27181 (to M.M.), R01 CA55852 and R01 CA105412 (to J.Q.) and NSERC PDF-313420-2005 (to J.L.). The authors thank M. Wood (Scripps Microscopy Core Facility), X. Zhang, E. Rockenstein and N. MacLean (University of California San Diego) for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marianne Manchester or Heidi Stuhlmann.

Ethics declarations

Competing interests

A patent has been filed to cover the intellectual property described in this manuscript. This patent application has furthermore been exclusively licensed to a private third party.

Supplementary information

Supplementary Fig. 1

Cell adhesion and uptake is inhibited by coating of CPMV with PEG. (PDF 129 kb)

Supplementary Fig. 2

CPMV uptake is eliminated in chick embryos and reduced significantly in adult mice by PEG coating. (PDF 142 kb)

Supplementary Video 1

Fluorescent timelapse imaging of yolk sac of 11.5 d mouse embryo at 10 magnification 1 h after CPMV-A555 perfusion. (AVI 8067 kb)

Supplementary Video 2

Fluorescent timelapse imaging of chick embryo CAM vasculature at 20 magnification 30 min after CPMV-A555 perfusion. (AVI 3675 kb)

Supplementary Video 3

Fluorescent timelapse imaging of chick embryo CAM vasculature at 10 magnification 30 min after CPMV-A555 (left) and CPMV-PEG-FITC (right) coperfusion, duration; 11 s. (AVI 5813 kb)

Supplementary Video 4

Fluorescent timelapse imaging of internal vasculature of 11.5 d mouse embryo at 10 magnification 1 h after CPMV-A555 perfusion. (AVI 10674 kb)

Supplementary Methods (PDF 38 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, J., Destito, G., Zijlstra, A. et al. Viral nanoparticles as tools for intravital vascular imaging. Nat Med 12, 354–360 (2006). https://doi.org/10.1038/nm1368

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1368

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing