Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The cortical topography of human swallowing musculature in health and disease

Abstract

Because no detailed information exists regarding the topographic representation of swallowing musculature on the human cerebral cortex in health or disease, we used transcranial magnetic stimulation to study the cortical topography of human oral, pharyngeal and esophageal musculature in 20 healthy individuals and the topography of pharyngeal musculature in two stroke patients, one with and one without dysphagia. Our results demonstrate that swallowing musculature is discretely and somatotopically represented on the motor and premotor cortex of both hemispheres but displays interhemispheric asymmetry, independent of handedness. Following stroke, dysphagia appeared to be associated with smaller pharyngeal representation on the intact hemisphere, which increases in size with recovery of swallowing.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bastian, H.C., A Treatise on Aphasia and Other Speech Defects. 87, (Lewis, London, 1898).

    Google Scholar 

  2. Gordon, C., Langton Hewer, R. & Wade, D.T. Dysphagia in acute stroke. Br. Med. J. 295, 411–414 (1987).

    Article  CAS  Google Scholar 

  3. Barer, D.H. The natural history and functional consequences of dysphagia after hemispheric stroke. J. Neurol. Neurosurg. Psychiatry 52, 236–241 (1989).

    Article  CAS  Google Scholar 

  4. Johnson, E.R., et al. Dysphagia following stroke: Quantitative evaluation of pharyngeal transit times. Arch. Phys. Med. Rehabil. 73, 419–423 (1992).

    CAS  PubMed  Google Scholar 

  5. Penfield, W. & Boldery, E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60, 389–443 (1937).

    Article  Google Scholar 

  6. Woolsey, C.N., Erikson, T.C. & Gilson, W.E. Localization in somatic sensory and motor areas of human cerebral cortex as determined by direct recording of evoked potentials and electrical stimulation. J. Neurosurg. 51, 476–506 (1979).

    Article  CAS  Google Scholar 

  7. Meadows, J. Dysphagia in unilateral cerebral lesions. J. Neurol. Neurosurg. Psychiatry. 36, 853–860 (1973).

    Article  CAS  Google Scholar 

  8. Alberts, M.J., Horner, J., Gray, L. & Braser, S.R. Aspiration after stroke: Lesion analysis by brain MRI. Dysphagia 7, 170–173 (1992).

    Article  CAS  Google Scholar 

  9. Barker, A.T., Jalinous, R. & Freestone, I.L. Non-invasive magnetic stimulation of the human motor cortex. Lancet 1, 1106–1107 (1985).

    Article  CAS  Google Scholar 

  10. Bridgers, S. The safety of transcranial magnetic stimulation reconsidered: Evidence regarding cognitive and other cerebral effects. Electroencephalogr. Clin. Neurophysiol. 43 (Suppl.), 170–179 (1991).

    CAS  Google Scholar 

  11. Aziz, Q., et al. Esophageal myoelectric responses to magnetic stimulation of the human cortex and extracranial vagus nerve. Am. J. Physiol. 267, G827–G835 (1994).

    Article  CAS  Google Scholar 

  12. Aziz, Q., Rothwell, J.C., Barlow, J. & Thompson, D.G. Modulation of oesophageal responses to magneto-electric stimulation of the human brain by swallowing and vagal stimulation. Gastroenterology. 109, 1437–1445 (1995).

    Article  CAS  Google Scholar 

  13. Satz, P. A test of some models of hemispheric speech organization in the left-and right-handed. Science. 203, 1131–1133 (1979).

    Article  CAS  Google Scholar 

  14. Robbins, J. & Levine, R.L. Swallowing after unilateral stroke of the cerebral cortex: Preliminary experience. Dysphagia 3, 11–14 (1988).

    Article  CAS  Google Scholar 

  15. Martin, R.E. & Sessle, B.J. The role of the cerebral cortex in swallowing. Dysphagia 8, 195–202 (1993).

    Article  CAS  Google Scholar 

  16. Miller, A.J. & Bowman, J.P. Precentral cortical modulation of mastication and swallowing. J. Dent. Res. 56, 1154 (1977).

    Article  CAS  Google Scholar 

  17. Jean, A. Brainstem control of swallowing: Localisation and organisation of the central pattern generator for swallowing. in Neurophysiology of the Jaws and Teeth (ed Taylor, A.). 294–321 (Macmillan, New York, 1990).

    Chapter  Google Scholar 

  18. McGuinness, E., Sivertsen, D. & Allman, J.M. Organisation of the face representation in the macaque motor cortex. J. Comp. Neurol. 193, 591–608 (1980).

    Article  CAS  Google Scholar 

  19. Woolsey, C.N., et al. Patterns of localization in precentral and “supplementary” motor areas and their relationship to the concept of a premotor area. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 30, 238–26–. (1952).

    CAS  Google Scholar 

  20. Hast, M.H., Fischer, J.M., Wetzel, A.B. & Thompson, V.E. Cortical motor representation of the laryngeal muscles in Macaca mulatta . Brain Res. 73, 229–240 (1974).

    Article  CAS  Google Scholar 

  21. Sumi, T. Some properties of cortically evoked swallowing in rabbits. Brain Res. 15, 107–120 (1969).

    Article  CAS  Google Scholar 

  22. Shipley, M.T. Insular cortex projections to the nucleus of the solitary tract and the brainstem visceromotor regions in the mouse. Brain Res. Bull. 8, 139–148 (1982).

    Article  CAS  Google Scholar 

  23. Mesulam, M.M. & Mufson, E.J. Insula of the old world monkey. III. Efferent cortical output and comments on function. J. Comp. Neurol. 212, 38–52 (1982).

    Article  CAS  Google Scholar 

  24. Mufson, E.J., Mesulam, M.M. & Pandya, D.N. Insular interconnections with the amygdala in the rhesus monkey. Neuroscience 6, 1231–1248 (1981).

    Article  CAS  Google Scholar 

  25. Bradshaw, J.L. & Nettleton, N.C., Human Cerebral Asymmetry. 21–30 (Prentice-Hall, Englewood Cliffs, New Jersey, 1983).

    Google Scholar 

  26. Bishop, D.V.M., Handedness and Developmental Disorders. 27–35 (MacKeith, Oxford, 1990).

    Google Scholar 

  27. Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia 9, 97–113 (1971).

    Article  CAS  Google Scholar 

  28. Doty, R.W. & Bosma, J.R. An electromyographic analysis of reflex deglutition. J. Neurophysiol. 19, 44–60 (1956).

    Article  CAS  Google Scholar 

  29. Wang, B., Toro, C., Zeffiro, A. & Hallet, M. Head surface digitalisation and registration: A method for mapping positions on the head onto magnetic resonance images. Brain Topogr. 6, 185–192 (1994).

    Article  CAS  Google Scholar 

  30. Jalinous, R. Technical and practical aspects of magnetic nerve stimulation. J. Clin. Neurophysiol. 8, 10–25 (1991).

    Article  CAS  Google Scholar 

  31. Medical Research Council. Aids to the Examination of the Peripheral Nervous System. 6–7 (Pendragon House, London, 1976).

  32. Levy, W.J., Amassian, V.E., Schmid, U.D. & Jungreis, C. Mapping of the motor cortex gyral sites non-invasively by transcranial magnetic stimulation in normal subjects and patients. Electroencephalogr. Clin. Neurophysiol. 43 (Suppl.), 51–75 (1991).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamdy, S., Aziz, Q., Rothwell, J. et al. The cortical topography of human swallowing musculature in health and disease. Nat Med 2, 1217–1224 (1996). https://doi.org/10.1038/nm1196-1217

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1196-1217

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing