Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective inactivation or reconstitution of adenosine A2A receptors in bone marrow cells reveals their significant contribution to the development of ischemic brain injury

Abstract

Inactivation of the adenosine A2A receptor (A2AR) consistently protects against ischemic brain injury and other neural insults, but the relative contribution of A2ARs on peripheral inflammatory cells versus A2ARs expressed on neurons and glia is unknown. We created a chimeric mouse model in which A2ARs on bone marrow–derived cells (BMDCs) were selectively inactivated or reconstituted by bone marrow transplantation. Selective reconstitution of A2ARs on BMDCs (A2AR knockout mice transplanted with wild-type bone marrow cells) largely reinstates ischemic brain injury in global A2AR knockout mice. Conversely, selective inactivation of A2ARs on BMDCs (wild-type mice transplanted with A2AR knockout bone marrow cells) attenuates infarct volumes and ischemia-induced expression of several proinflammatory cytokines in the brain, but exacerbates ischemic liver injury. These results indicate that the A2AR-stimulated cascade in BMDCs is an important modulator of ischemic brain injury and that ischemic brain and liver injuries are regulated distinctly by A2ARs on BMDCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of chimeric mice with selective inactivation or reconstitution of the A2AR on BMDCs.
Figure 2: Selective reconstitution of A2ARs on BMDCs largely reinstates MCAO-induced ischemic brain injury, as shown by infarct volumes and infarct areas in brains of three groups of chimeric A2AR knockout mice (WT→WT, black; KO→KO, light gray; and WT→KO, white).
Figure 3: Selective inactivation of A2ARs on BMDCs attenuates MCAO-induced brain injury.
Figure 4: Neutrophil infiltration and microglial activation in ischemic brain were indistinguishable between the WT→WTcr and KO→WTcr mice.
Figure 5: Selective inactivation of A2ARs on BMDCs alters MCAO-induced cytokine mRNA expression in brain.
Figure 6: Selective inactivation of the A2AR on BMDCs exacerbates ischemic liver injury and enhanced proinflammatory cytokine expression, as shown by activity of serum GPT (a) and abundance of mRNA (b) for proinflammatory cytokines.

Similar content being viewed by others

References

  1. Chen, J.F. The adenosine A(2A) receptor as an attractive target for Parkinson's disease treatment. Drug News Perspect. 16, 597–604 (2003).

    Article  CAS  Google Scholar 

  2. Fredholm, B.B. Adenosine receptors as targets for drug development. Drug News Perspect. 16, 283–289 (2003).

    Article  CAS  Google Scholar 

  3. Ribeiro, J.A., Sebastiao, A.M. & de Mendonca, A. Adenosine receptors in the nervous system: pathophysiological implications. Prog. Neurobiol. 68, 377–392 (2002).

    Article  CAS  Google Scholar 

  4. Schwarzschild, M.A., Chen, J.F. & Ascherio, A. Caffeinated clues and the promise of adenosine A(2A) antagonists in PD. Neurology 58, 1154–1160 (2002).

    Article  CAS  Google Scholar 

  5. Dunwiddie, T.V. & Masino, S.A. The role and regulation of adenosine in the central nervous system. Annu. Rev. Neurosci. 24, 31–55 (2001).

    Article  CAS  Google Scholar 

  6. Latini, S. & Pedata, F. Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J. Neurochem. 79, 463–484 (2001).

    Article  CAS  Google Scholar 

  7. Rudolphi, K.A., Schubert, P., Parkinson, F.E. & Fredholm, B.B. Neuroprotective role of adenosine in cerebral ischaemia. Trends Pharmacol. Sci. 13, 439–445 (1992).

    Article  CAS  Google Scholar 

  8. Johansson, B. et al. Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor. Proc. Natl. Acad. Sci. USA 98, 9407–9412 (2001).

    Article  CAS  Google Scholar 

  9. Von Lubitz, D.K., Paul, I.A., Ji, X.D., Carter, M. & Jacobson, K.A. Chronic adenosine A1 receptor agonist and antagonist: effect on receptor density and N-methyl-D-aspartate induced seizures in mice. Eur. J. Pharmacol. 253, 95–99 (1994).

    Article  CAS  Google Scholar 

  10. Chen, J.F. et al. A(2A) adenosine receptor deficiency attenuates brain injury induced by transient focal ischemia in mice. J. Neurosci. 19, 9192–9200 (1999).

    Article  CAS  Google Scholar 

  11. Chen, J.F. et al. Neuroprotection by caffeine and A(2A) adenosine receptor inactivation in a model of Parkinson's disease. J. Neurosci. 21, RC143 (2001).

    Article  CAS  Google Scholar 

  12. Blum, D. et al. A dual role of adenosine A2A receptors in 3-nitropropionic acid-induced striatal lesions: implications for the neuroprotective potential of A2A antagonists. J. Neurosci. 23, 5361–5369 (2003).

    Article  CAS  Google Scholar 

  13. Popoli, P. et al. Blockade of striatal adenosine A2A receptor reduces, through a presynaptic mechanism, quinolinic acid-induced excitotoxicity: possible relevance to neuroprotective interventions in neurodegenerative diseases of the striatum. J. Neurosci. 22, 1967–1975 (2002).

    Article  CAS  Google Scholar 

  14. de Mendonca, A., Sebastiao, A.M. & Ribeiro, J.A. Adenosine: does it have a neuroprotective role after all? Brain Res. Brain Res. Rev. 33, 258–274 (2000).

    Article  CAS  Google Scholar 

  15. Jones, P.A., Smith, R.A. & Stone, T.W. Protection against kainate-induced excitotoxicity by adenosine A2A receptor agonists and antagonists. Neuroscience 85, 229–237 (1998).

    Article  CAS  Google Scholar 

  16. Jones, P.A., Smith, R.A. & Stone, T.W. Protection against hippocampal kainate excitotoxicity by intracerebral administration of an adenosine A2A receptor antagonist. Brain Res. 800, 328–335 (1998).

    Article  CAS  Google Scholar 

  17. Phillis, J.W. The effects of selective A1 and A2a adenosine receptor antagonists on cerebral ischemic injury in the gerbil. Brain Res. 705, 79–84 (1995).

    Article  CAS  Google Scholar 

  18. Monopoli, A., Lozza, G., Forlani, A., Mattavelli, A. & Ongini, E. Blockade of adenosine A2A receptors by SCH 58261 results in neuroprotective effects in cerebral ischaemia in rats. Neuroreport 9, 3955–3959 (1998).

    Article  CAS  Google Scholar 

  19. Ikeda, K., Kurokawa, M., Aoyama, S. & Kuwana, Y. Neuroprotection by adenosine A2A receptor blockade in experimental models of Parkinson's disease. J. Neurochem. 80, 262–270 (2002).

    Article  CAS  Google Scholar 

  20. Fink, J.S. et al. Genetic and pharmacological inactivation of the adenosine A2A receptor attenuates 3-nitropropionic acid-induced striatal damage. J. Neurochem. 88, 538–544 (2004).

    Article  CAS  Google Scholar 

  21. Dall'lgna, O.P., Porciuncula, L.O., Souza, D.O., Cunha, R.A. & Lara, D.R. Neuroprotection by caffeine and adenosine A(2A) receptor blockade of beta-amyloid neurotoxicity. Br. J. Pharmacol. 138, 1207–1209 (2003).

    Article  Google Scholar 

  22. Marchi, M. et al. Effects of adenosine A1 and A2A receptor activation on the evoked release of glutamate from rat cerebrocortical synaptosomes. Br. J. Pharmacol. 136, 434–440 (2002).

    Article  CAS  Google Scholar 

  23. Marcoli, M. et al. Sensitivity to selective adenosine A1 and A2A receptor antagonists of the release of glutamate induced by ischemia in rat cerebrocortical slices. Neuropharmacology 45, 201–210 (2003).

    Article  CAS  Google Scholar 

  24. O'Regan, M.H., Simpson, R.E., Perkins, L.M. & Phillis, J.W. The selective A2 adenosine receptor agonist CGS 21680 enhances excitatory transmitter amino acid release from the ischemic rat cerebral cortex. Neurosci. Lett. 138, 169–172. (1992).

    Article  CAS  Google Scholar 

  25. Schwarzschild, M.A. et al. Neuroprotection by caffeine and more specific A2A receptor antagonists in animal models of Parkinson's disease. Neurology 61, S55–S61 (2003).

    Article  CAS  Google Scholar 

  26. Cassada, D.C. et al. Adenosine A2A agonist reduces paralysis after spinal cord ischemia: correlation with A2A receptor expression on motor neurons. Ann. Thorac. Surg. 74, 846–849; discussion 849–850 (2002).

    Article  Google Scholar 

  27. Cassada, D.C. et al. Adenosine A2A analogue improves neurologic outcome after spinal cord trauma in the rabbit. J. Trauma 53, 225–229; discussion 229–231 (2002).

    Article  CAS  Google Scholar 

  28. Mayne, M. et al. Adenosine A2A receptor activation reduces proinflammatory events and decreases cell death following intracerebral hemorrhage. Ann. Neurol. 49, 727–735 (2001).

    Article  CAS  Google Scholar 

  29. Day, Y.J. et al. Renal protection from ischemia mediated by A2A adenosine receptors on bone marrow-derived cells. J. Clin. Invest. 112, 883–891 (2003).

    Article  CAS  Google Scholar 

  30. Day, Y.J. et al. Protection from ischemic liver injury by activation of A2A adenosine receptors during reperfusion: inhibition of chemokine induction. Am. J. Physiol. Gastrointest. Liver Physiol. 286, G285–G293 (2004).

    Article  CAS  Google Scholar 

  31. Linden, J. Molecular approach to adenosine receptors: receptor-mediated mechanisms of tissue protection. Annu. Rev. Pharmacol. Toxicol. 41, 775–787 (2001).

    Article  CAS  Google Scholar 

  32. Ohta, A. & Sitkovsky, M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414, 916–920 (2001).

    Article  CAS  Google Scholar 

  33. Fiser, S.M. et al. Adenosine A2A receptor activation decreases reperfusion injury associated with high-flow reperfusion. J. Thorac. Cardiovasc. Surg. 124, 973–978 (2002).

    Article  CAS  Google Scholar 

  34. Fredholm, B.B., Cunha, R.A. & Svenningsson, P. Pharmacology of adenosine A2A receptors and therapeutic applications. Curr. Top. Med. Chem. 3, 413–426 (2003).

    Article  CAS  Google Scholar 

  35. Aden, U. et al. Aggravated brain damage after hypoxic ischemia in immature adenosine A2A knockout mice. Stroke 34, 739–744 (2003).

    Article  Google Scholar 

  36. Fredholm, B.B., Cunha, R.A. & Svenningsson, P. Pharmacology of Adenosine A(2A) Receptors and Therapeutic Applications. Curr. Top. Med. Chem. 3, 413–426 (2003).

    Article  CAS  Google Scholar 

  37. Orkin, S.H. & Zon, L.I. Hematopoiesis and stem cells: plasticity versus developmental heterogeneity. Nat. Immunol. 3, 323–328 (2002).

    Article  CAS  Google Scholar 

  38. Sitkovsky, M.V. et al. Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu. Rev. Immunol. 22, 657–682 (2004).

    Article  CAS  Google Scholar 

  39. Cronstein, B.N. Adenosine, an endogenous anti-inflammatory agent. J. Appl. Physiol. 76, 5–13 (1994).

    Article  CAS  Google Scholar 

  40. Teng, M.K. et al. Identification of a common docking topology with substational variation among different TCR-peptide-MHC complexes. Curr. Biol. 8, 409–412 (1998).

    Article  CAS  Google Scholar 

  41. Loddick, S.A., Turnbull, A.V. & Rothwell, N.J. Cerebral interleukin-6 is neuroprotective during permanent focal cerebral ischemia in the rat. J. Cereb. Blood Flow Metab. 18, 176–179 (1998).

    Article  CAS  Google Scholar 

  42. Clark, W.M., Rinker, L.G., Lessov, N.S., Hazel, K. & Eckenstein, F. Time course of IL-6 expression in experimental CNS ischemia. Neurol. Res. 21, 287–292 (1999).

    Article  CAS  Google Scholar 

  43. Smith, C.J. et al. Peak plasma interleukin-6 and other peripheral markers of inflammation in the first week of ischaemic stroke correlate with brain infarct volume, stroke severity and long-term outcome. BMC Neurol. 4, 2 (2004).

    Article  Google Scholar 

  44. Castillo, J. et al. The release of tumor necrosis factor-alpha is associated with ischemic tolerance in human stroke. Ann. Neurol. 54, 811–819 (2003).

    Article  CAS  Google Scholar 

  45. Acalovschi, D. et al. Multiple levels of regulation of the interleukin-6 system in stroke. Stroke 34, 1864–1869 (2003).

    Article  CAS  Google Scholar 

  46. Altare, F. et al. Impairment of mycobacterial immunity in human interleukin-12 receptor deficiency. Science 280, 1432–1435 (1998).

    Article  CAS  Google Scholar 

  47. Mroz, K., Carrel, L. & Hunt, P.A. Germ cell development in the XXY mouse: evidence that X chromosome reactivation is independent of sexual differentiation. Dev. Biol. 207, 229–238 (1999).

    Article  CAS  Google Scholar 

  48. Rosin, D.L., Robeva, A., Woodard, R.L., Guyenet, P.G. & Linden, J. Immunohistochemical localization of adenosine A2A receptors in the rat central nervous system. J. Comp. Neurol. 401, 163–186. (1998).

    Article  CAS  Google Scholar 

  49. Huang, Z. et al. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265, 1883–1885 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B.B. Fredholm and M.A. Schwarzschild for discussion and critical reading of the manuscript and D. Xu for assistance with FACS analysis. This work was supported in part by grants NS37403, NS41083 (J-F.C.) and NS-10828 (M.M.) from the US National Institutes of Health and by Bumpus Foundation (J-F.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang-Fan Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Cerebrovascular and systemic physiology before, during and after MCAO-induced ischemia in WT→WT and KO→WT mice (PDF 19 kb)

Supplementary Table 2

Primers sequences for the genotyping and qPCR analysis (PDF 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, L., Huang, Z., Mariani, J. et al. Selective inactivation or reconstitution of adenosine A2A receptors in bone marrow cells reveals their significant contribution to the development of ischemic brain injury. Nat Med 10, 1081–1087 (2004). https://doi.org/10.1038/nm1103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1103

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing