Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

P2X7 receptor inhibition improves recovery after spinal cord injury

Abstract

Secondary injury exacerbates the extent of spinal cord insults, yet the mechanistic basis of this phenomenon has largely been unexplored. Here we report that broad regions of the peritraumatic zone are characterized by a sustained process of pathologic, high ATP release. Spinal cord neurons expressed P2X7 purine receptors (P2X7R), and exposure to ATP led to high-frequency spiking, irreversible increases in cytosolic calcium and cell death. To assess the potential effect of P2X7R blockade in ameliorating acute spinal cord injury (SCI), we delivered P2X7R antagonists OxATP or PPADS to rats after acute impact injury. We found that both OxATP and PPADS significantly improved functional recovery and diminished cell death in the peritraumatic zone. These observations demonstrate that SCI is associated with prolonged purinergic receptor activation, which results in excitotoxicity-based neuronal degeneration. P2X7R antagonists inhibit this process, reducing both the histological extent and functional sequelae of acute SCI.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bioluminescence detection of ATP release after acute SCI.
Figure 2: Areas of high ATP release are associated with increased apoptosis.
Figure 3: Motor neurons express functional P2X7Rs.
Figure 4: P2X7R activation induces high-frequency firing in spinal cord neurons.
Figure 5: P2X7R antagonists reduce apoptosis and improve functional recovery after SCI.

Similar content being viewed by others

References

  1. North, R.A. Molecular physiology of P2X receptors. Physiol. Rev. 82, 1013–1067 (2002).

    Article  CAS  Google Scholar 

  2. Khakh, B.S., Bao, X.R., Labarca, C. & Lester, H.A. Neuronal P2X transmitter-gated cation channels change their ion selectivity in seconds. Nat. Neurosci. 2, 322–330 (1999).

    Article  CAS  Google Scholar 

  3. Di Virgilio, F. et al. Cytolytic P2X purinoceptors. Cell Death Differ. 5, 191–199 (1998).

    Article  CAS  Google Scholar 

  4. Deuchars, S.A. et al. Neuronal P2X7 receptors are targeted to presynaptic terminals in the central and peripheral nervous systems. J. Neurosci. 21, 7143–7152 (2001).

    Article  CAS  Google Scholar 

  5. Cotrina, M.L. et al. Connexins regulate calcium signaling by controlling ATP release. Proc. Natl. Acad. Sci. USA 95, 15735–15740 (1998).

    Article  CAS  Google Scholar 

  6. Guthrie, P.B. et al. ATP released from astrocytes mediates glial calcium waves. J. Neurosci. 19, 520–528 (1999).

    Article  CAS  Google Scholar 

  7. Arcuino, G. et al. Intercellular calcium signaling mediated by point-source burst release of ATP. Proc. Natl. Acad. Sci. USA 99, 9840–9845 (2002).

    Article  CAS  Google Scholar 

  8. Fields, R.D. & Stevens-Graham, B. New insights into neuron-glia communication. Science 298, 556–562 (2002).

    Article  CAS  Google Scholar 

  9. Haydon, P.G. Glia: listening and talking to the synapse. Nat. Rev. Neurosci. 2, 185–193 (2001).

    Article  CAS  Google Scholar 

  10. Nedergaard, M., Ransom, B. & Goldman, S. New roles for astrocytes: Redefining the functional architecture of the brain. Trends Neurosci. 26, 523–530 (2003).

    Article  CAS  Google Scholar 

  11. Scemes, E., Suadicani, S.O. & Spray, D.C. Intercellular communication in spinal cord astrocytes: fine tuning between gap junctions and P2 nucleotide receptors in calcium wave propagation. J. Neurosci. 20, 1435–1445 (2000).

    Article  CAS  Google Scholar 

  12. Fam, S.R., Gallagher, C.J. & Salter, M.W. P2Y(1) purinoceptor-mediated Ca2+ signaling and Ca2+ wave propagation in dorsal spinal cord astrocytes. J. Neurosci. 20, 2800–2808 (2000).

    Article  CAS  Google Scholar 

  13. Cook, S.P. & McCleskey, E.W. Cell damage excites nociceptors through release of cytosolic ATP. Pain 95, 41–47 (2002).

    Article  CAS  Google Scholar 

  14. Neary, J.T., Kang, Y., Willoughby, K.A. & Ellis, E.F. Activation of extracellular signal-regulated kinase by stretch-induced injury in astrocytes involves extracellular ATP and P2 purinergic receptors. J. Neurosci. 23, 2348–2356 (2003).

    Article  CAS  Google Scholar 

  15. Du, S. et al. Calcium influx and activation of calpain I mediate acute reactive gliosis in injured spinal cord. Exp. Neurol. 157, 96–105 (1999).

    Article  CAS  Google Scholar 

  16. Stokes, B.T., Fox, P. & Hollinden, G. Extracellular calcium activity in the injured spinal cord. Exp. Neurol. 80, 561–572 (1983).

    Article  CAS  Google Scholar 

  17. Nilsson, P., Hillered, L., Olsson, Y., Sheardown, M.J. & Hansen, A.J. Regional changes in interstitial K+ and Ca2+ levels following cortical compression contusion trauma in rats. J. Cereb. Blood Flow Metab. 13, 183–192 (1993).

    Article  CAS  Google Scholar 

  18. Stout, C. & Charles, A. Modulation of intercellular calcium signaling in astrocytes by extracellular calcium and magnesium. Glia 43, 265–273 (2003).

    Article  Google Scholar 

  19. Bianchi, B.R. et al. Pharmacological characterization of recombinant human and rat P2X receptor subtypes. Eur. J. Pharmacol. 376, 127–138 (1999).

    Article  CAS  Google Scholar 

  20. Wang, Z., Tymianski, M., Jones, O.T. & Nedergaard, M. Impact of cytoplasmic calcium buffering on the spatial and temporal characteristics of intercellular calcium signals in astrocytes. J. Neurosci. 17, 7359–7371 (1997).

    Article  CAS  Google Scholar 

  21. Takano, T. et al. Glutamate release promotes growth of malignant gliomas. Nat. Med. 7, 1010–1015 (2001).

    Article  CAS  Google Scholar 

  22. Chow, S.C., Kass, G.E. & Orrenius, S. Purines and their roles in apoptosis. Neuropharmacology 36, 1149–1156 (1997).

    Article  CAS  Google Scholar 

  23. Le Feuvre, R.A., Brough, D., Touzani, O. & Rothwell, N.J. Role of P2X7 receptors in ischemic and excitotoxic brain injury in vivo. J. Cereb. Blood Flow Metab. 23, 381–384 (2003).

    Article  CAS  Google Scholar 

  24. Emery, E. et al. Apoptosis after traumatic human spinal cord injury. J. Neurosurg. 89, 911–920 (1998).

    Article  CAS  Google Scholar 

  25. Keane, R.W. et al. Apoptotic and anti-apoptotic mechanisms following spinal cord injury. J. Neuropathol. Exp. Neurol. 60, 422–429 (2001).

    Article  CAS  Google Scholar 

  26. Murgia, M., Hanau, S., Pizzo, P., Rippa, M. & Di Virgilio, F. Oxidized ATP. An irreversible inhibitor of the macrophage purinergic P2Z receptor. J. Biol. Chem. 268, 8199–8203 (1993).

    CAS  PubMed  Google Scholar 

  27. Michel, A.D., Kaur, R., Chessell, I.P. & Humphrey, P.P. Antagonist effects on human P2X(7) receptor-mediated cellular accumulation of YO-PRO-1. Br. J. Pharmacol. 130, 513–520 (2000).

    Article  CAS  Google Scholar 

  28. Egan, T.M. & Khakh, B.S. Contribution of calcium ions to P2X channel responses. J. Neurosci. 24, 3413–3420 (2004).

    Article  CAS  Google Scholar 

  29. Collo, G. et al. Tissue distribution of the P2X7 receptor. Neuropharmacology 36, 1277–1283 (1997).

    Article  CAS  Google Scholar 

  30. Armstrong, J.N., Brust, T.B., Lewis, R.G. & MacVicar, B.A. Activation of presynaptic P2X7-like receptors depresses mossy fiber-CA3 synaptic transmission through p38 mitogen-activated protein kinase. J. Neurosci. 22, 5938–5945 (2002).

    Article  CAS  Google Scholar 

  31. Duan, S., Anderson, C.M., Keung, E.C., Chen, Y. & Swanson, R.A. P2X7 receptor-mediated release of excitatory amino acids from astrocytes. J. Neurosci. 23, 1320–1328 (2003).

    Article  CAS  Google Scholar 

  32. Grafe, P., Mayer, C., Takigawa, T., Kamleiter, M. & Sanchez-Brandelik, R. Confocal calcium imaging reveals an ionotropic P2 nucleotide receptor in the paranodal membrane of rat Schwann cells. J. Physiol. 515 (Pt. 2), 377–383 (1999).

    Article  CAS  Google Scholar 

  33. Ray, S.K., Dixon, C.E. & Banik, N.L. Molecular mechanisms in the pathogenesis of traumatic brain injury. Histol. Histopathol. 17, 1137–1152 (2002).

    CAS  PubMed  Google Scholar 

  34. Newman, E.A. New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci. 26, 536–542 (2003).

    Article  CAS  Google Scholar 

  35. Cawthon, D.F., Senter, H.J. & Stewart, W.B. Comparison of hydrogen clearance and 14C-antipyrine autoradiography in the measurement of spinal cord blood flow after severe impact injury. J. Neurosurg. 52, 801–807 (1980).

    Article  CAS  Google Scholar 

  36. Farooque, M., Hillered, L., Holtz, A. & Olsson, Y. Changes of extracellular levels of amino acids after graded compression trauma to the spinal cord: an experimental study in the rat using microdialysis. J. Neurotrauma 13, 537–548 (1996).

    Article  CAS  Google Scholar 

  37. Jeremic, A., Jeftinija, K., Stevanovic, J., Glavaski, A. & Jeftinija, S. ATP stimulates calcium-dependent glutamate release from cultured astrocytes. J. Neurochem. 77, 664–675 (2001).

    Article  CAS  Google Scholar 

  38. Nedergaard, M., Takano, T. & Hansen, A.J. Beyond the role of glutamate as a neurotransmitter. Nat. Rev. Neurosci. 3, 748–755 (2002).

    Article  CAS  Google Scholar 

  39. Agrawal, S.K. & Fehlings, M.G. Role of NMDA and non-NMDA ionotropic glutamate receptors in traumatic spinal cord axonal injury. J. Neurosci. 17, 1055–1063 (1997).

    Article  CAS  Google Scholar 

  40. Haghighi, S.S., Johnson, G.C., de Vergel, C.F. & Vergel Rivas, B.J. Pretreatment with NMDA receptor antagonist MK801 improves neurophysiological outcome after an acute spinal cord injury. Neurol. Res. 18, 509–515 (1996).

    Article  CAS  Google Scholar 

  41. Le Feuvre, R., Brough, D. & Rothwell, N. Extracellular ATP and P2X7 receptors in neurodegeneration. Eur. J. Pharmacol. 447, 261–269 (2002).

    Article  CAS  Google Scholar 

  42. Solle, M. et al. Altered cytokine production in mice lacking P2X(7) receptors. J. Biol. Chem. 276, 125–132 (2001).

    Article  CAS  Google Scholar 

  43. Labasi, J.M. et al. Absence of the P2X7 receptor alters leukocyte function and attenuates an inflammatory response. J. Immunol. 168, 6436–6445 (2002).

    Article  CAS  Google Scholar 

  44. Suzuki, T. et al. Production and release of neuroprotective tumor necrosis factor by P2X7 receptor-activated microglia. J. Neurosci. 24, 1–7 (2004).

    Article  CAS  Google Scholar 

  45. Parvathenani, L.K. et al. P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer's disease. J. Biol. Chem. 278, 13309–13317 (2003).

    Article  CAS  Google Scholar 

  46. Goldman, S.A. & Nedergaard, M. Erythropoietin strikes a new cord. Nat. Med. 8, 785–787 (2002).

    Article  CAS  Google Scholar 

  47. Profyris, C. et al. Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiol. Dis. 15, 415–436 (2004).

    Article  Google Scholar 

  48. Basso, D.M., Beattie, M.S. & Bresnahan, J.C. A sensitive and reliable locomotor rating scale for open field testing in rats. J. Neurotrauma 12, 1–21 (1995).

    Article  CAS  Google Scholar 

  49. Nedergaard, M. & Hansen, A.J. Characterization of cortical depolarization evoked in focal cerebral ischemia. J. Cereb. Blood Flow Metab. 13, 568–574 (1993).

    Article  CAS  Google Scholar 

  50. Lin, J.H. et al. Gap-junction-mediated propagation and amplification of cell injury. Nat. Neurosci. 1, 494–500 (1998).

    Article  CAS  Google Scholar 

  51. Lin, J.H. et al. Connexin mediates gap junction-independent resistance to cellular injury. J. Neurosci. 23, 430–441 (2003).

    Article  CAS  Google Scholar 

  52. Roy, N.S. et al. Telomerase immortalization of neuronally restricted progenitor cells derived from the human fetal spinal cord. Nat. Biotechnol. 22, 297–305 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Institute of Neurological Disorders and Stroke and the New York State Spinal Cord Injury Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maiken Nedergaard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Arcuino, G., Takano, T. et al. P2X7 receptor inhibition improves recovery after spinal cord injury. Nat Med 10, 821–827 (2004). https://doi.org/10.1038/nm1082

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1082

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing