Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enx (Hox11L1)-deficient mice develop myenteric neuronal hyperplasia and megacolon

Abstract

The isolated homeobox gene Enx (Hox11L1) is expressed in enteric neurons innervating distal ileum, and proximal and distal colon. Enx-deficient mice develop megacolon with massive distension of the proximal colon. The number of myenteric ganglia, total neurons per ganglion, and NADPH diaphorase presumptive inhibitory neurons per ganglion are increased in the proximal and distal colon, but decreased in the distal ileum of all Enx−/− mice. Enx−/− mice provide a model for human neuronal intestinal dysplasia (NID), in which myenteric neuronal hyperplasia and megacolon are seen. These results suggest that Enx is required for the proper positional specification and differentiate cell fate of enteric neurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Krumlauf, R. Hox genes in vertebrate development. Cell 78, 191–201 (1994).

    Article  CAS  Google Scholar 

  2. Hatano, M., Roberts, C.W.M., Minden, M., Crist, W.M., Korsmeyer, S.J. Deregulation of a homeobox gene Hox11, by the t(10;14) in T cell leukemia. Science 253, 79–82 (1991).

    Article  CAS  Google Scholar 

  3. Kennedy, M.A. et al. Hox11, a homeobox-containing T-cell oncogene on human chromosome 10q24. Proc. Natl. Acad. Sci. USA 88, 8900–8904 (1991).

    Article  CAS  Google Scholar 

  4. Roberts, C.W.M., Shutter, J.R. & Korsmeyer, S.J. Hox11controls the genesis of the spleen. Nature 368, 747–749 (1994).

    Article  CAS  Google Scholar 

  5. Dear, T.N. et al. The Hox11 gene is essential for cell survival during spleen development. Development 121, 2909–2915 (1995).

    CAS  PubMed  Google Scholar 

  6. Roberts, C.W.M., Sonder, A.M., Lumsden, A. & Korsmeyer, S.J. Developmental expression of Hox11 and specification of splenic cell fate. Am. J. Pathol. 146, 1089–1101 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Dear, T.N., Sanchez-Garcia, I. & Rabbitts, T.H. The HOX11 gene encodes a DNA-binding nuclear transcription factor belonging to a distinct family of homeobox genes. Proc. Natl. Acad. Sci. USA 90, 4431–4435 (1993).

    Article  CAS  Google Scholar 

  8. Rothman, TP. & Gershon, M.D. Phenotypic expression in the developing murine enteric nervous system. J. Neurosci. 2, 381–393 (1982).

    Article  CAS  Google Scholar 

  9. Heinicke, E.A., Kiernan, J.A. & Wijsman, J. Specific, selective, and complete staining of neurons of the myenteric plexus, using cuprolinic blue. J. Neurosci. Methods 21, 45–54 (1987).

    Article  CAS  Google Scholar 

  10. Gabella, G. Size of neurons and glial cells in the intramural ganglia of the hypertrophic intestine of the guinea-pig. J. Neurocytol. 13, 73–84 (1984).

    Article  CAS  Google Scholar 

  11. Schuchardt, A., D'Agati, V., Larsson-Blomberg, L., Constantini, F. & Pachnis, V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367, 380–383 (1994).

    Article  CAS  Google Scholar 

  12. Edery, P., et al. Long segment and short segment familial Hirschsprung's disease: Variable clinical expression at the RET locus. J. Med. Genet. 31, 602–606 (1994).

    Article  CAS  Google Scholar 

  13. Sanchez, M.P. et al. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382, 70–73 (1996).

    Article  CAS  Google Scholar 

  14. Pichel, J.G. et al. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382, 73–76 (1996).

    Article  CAS  Google Scholar 

  15. Moore, M.W. et al. Renal and neuronal abnormalities in mice lacking GDNF. Nature 382, 76–79 (1996).

    Article  CAS  Google Scholar 

  16. Hosoda, K. et al. Targeted and natural (piebaldlethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell 79, 1267–1276 (1994).

    Article  CAS  Google Scholar 

  17. Baynash, A.G. et al. Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell 79, 1277–1285 (1994).

    Article  CAS  Google Scholar 

  18. Schärli, A.F. & Meier-Ruge, W. Localized and disseminated forms of neuronal intestinal dysplasia mimicking Hirschsprung's disease. J. Pediatr. Surg. 16, 164–170 (1981).

    Article  Google Scholar 

  19. Reifferscheid, P. & Flach, A. Particular forms of Hirschsprung's disease. in Hirschsprung's Disease. (ed. Holschneider, A.) 133–151 (Stratton, New York, 1982).

    Google Scholar 

  20. Hofstra, R.M. et al. A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature 367, 375–376 (1994).

    Article  CAS  Google Scholar 

  21. Barone, V. et al. Exclusion of linkage between RET and neuronal intestinal dysplasia type B. Am. J. Med. Genet. 62, 195–198 (1996).

    Article  CAS  Google Scholar 

  22. Munakata, K., Morita, K., Okabe, I. & Sueoka, H. Clinical and histologic studies of neuronal intestinal dysplasia. J. Pediatr. Surg. 20, 231–235 (1985).

    Article  CAS  Google Scholar 

  23. Young, H.M., Furness, J.B., Shuttlworth, C.W.R., Bredt, D.S. & Snyder, S.H. Co-localization of nitric oxide synthase immunoreactivity and NADPH diaphorase staining in neurons of the guinea-pig intestine. Histochemistry 97, 375–378 (1992).

    Article  CAS  Google Scholar 

  24. Dawson, T.M., Bredt, D.S., Fotuhi, M., Hwang, P.M. & Snyder, S.H. Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues. Proc. Natl. Acad. Sci. USA 88, 7797–7801 (1991).

    Article  CAS  Google Scholar 

  25. Yunker, A.M. & Galligan, J.J. Endogenous NO inhibits NANC but not cholinergic neurotransmission to circular muscle of guinea pig ileum. Am. J. Physiol. 271, pp (1997).

    Article  CAS  Google Scholar 

  26. Wolgemuth, D.J., Behringer, R.R., Mostoller, M.P., Brinster, R.L. & Palmiter, R.D. Transgenic mice overexpressing the mouse homeobox-containing gene Hox-1.4 exhibit abnormal gut development. Nature 337, 464–467 (1989).

    Article  CAS  Google Scholar 

  27. Tennyson, V.M. et al. Structural abnormalities associated with congenital megacolon in transgenic mice that overexpress the Hoxa-4 gene. Dev. Dyn. 198, 28–53 (1993).

    Article  CAS  Google Scholar 

  28. Gershon, M.D., Chalazontis, A. & Rothman, T.P. From neural crest to bowel: Development of the enteric nervous system. J. Neurosci. 24, 199–214 (1993).

    CAS  Google Scholar 

  29. Hug, B. et al. Analysis of mice containing a targeted deletion of beta-globin locus control region 5′ hypersensitive site 3. Mol. Cell. Biol. 16, 2906–2912 (1996).

    Article  CAS  Google Scholar 

  30. Huang, S. et al. Immune response in mice that lack the interferon-γ receptor. Science 259, 1742–1745 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shirasawa, S., Yunker, A., Roth, K. et al. Enx (Hox11L1)-deficient mice develop myenteric neuronal hyperplasia and megacolon. Nat Med 3, 646–650 (1997). https://doi.org/10.1038/nm0697-646

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0697-646

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing