Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Complement component C3 promotes T-cell priming and lung migration to control acute influenza virus infection

Abstract

The complement cascade defines an important link between the innate and the specific immune system. Here we show that mice deficient for the third component of complement (C3−/− mice) are highly susceptible to primary infection with influenza virus. C3−/− mice showed delayed viral clearance and increased viral titers in lung, whereas mice deficient for complement receptors CR1 and CR2 (Cr2−/− mice) cleared the infection normally. Priming of T-helper cells and cytotoxic T cells (CTLs) in lung-draining lymph nodes was reduced, and the recruitment into the lung of virus-specific CD4+ and CD8+ effector T cells producing interferon-γ was severely impaired in C3−/− but not in Cr2−/− mice. Consequently, T-helper cell–dependent IgG responses were reduced in C3−/− mice but remained intact in Cr2−/− mice. These results demonstrate that complement induces specific immunity by promoting T-cell responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reduced clearance of influenza virus in C3−/− mice.
Figure 2: C3, but not CR1/CR2, is required for optimal Th cell–dependent IgG responses to influenza virus.
Figure 3: Pulmonary T-cell recruitment and effector function is controlled by C3.
Figure 4: Impaired priming of virus specific CD4+ T cells and CTLs in the absence of C3.
Figure 5: Adoptive transfer of wild-type T cells to C3−/− mice.

Similar content being viewed by others

References

  1. Carroll, M.C. & Prodeus, A.P. Linkages of innate and adaptive immunity. Curr. Opin. Immunol. 10, 36–40 (1998).

    Article  CAS  Google Scholar 

  2. Brown, E.J. Complement receptors, adhesion, and phagocytosis. Infect. Agents Dis. 1, 63–70 (1992).

    CAS  PubMed  Google Scholar 

  3. Muller-Eberhard, H.J. The membrane attack complex of complement. Annu. Rev. Immunol. 4, 503–528 (1986).

    Article  CAS  Google Scholar 

  4. Thieblemont, N. et al. Triggering of complement receptors CR1 (CD35) and CR3 (CD11b/CD18) induces nuclear translocation of NF-kappa B (p50/p65) in human monocytes and enhances viral replication in HIV-infected monocytic cells. J. Immunol. 155, 4861–4867 (1995).

    CAS  PubMed  Google Scholar 

  5. Carter, R.H., Spycher, M.O., Ng, Y.C., Hoffman, R. & Fearon, D.T. Synergistic interaction between complement receptor type 2 and membrane IgM on B lymphocytes. J. Immunol. 141, 457–463 (1988).

    CAS  PubMed  Google Scholar 

  6. Carter, R.H. & Fearon, D.T. CD19: Lowering the threshold for antigen receptor stimulation of B lymphocytes. Science 256, 105–107 (1992).

    Article  CAS  Google Scholar 

  7. van Noesel, C.J., Lankester, A.C. & van Lier, R.A. Dual antigen recognition by B cells. Immunol. Today 14, 8–11 (1993).

    Article  CAS  Google Scholar 

  8. Fearon, D.T. & Carter, R.H. The CD19/CR2/TAPA-1 complex of B lymphocytes: linking natural to acquired immunity. Annu. Rev. Immunol. 13, 127–149 (1995).

    Article  CAS  Google Scholar 

  9. Pepys, M.B. Role of complement in induction of antibody production In vivo. Effect of cobra factor and other C3-reactive agents on thymus-dependent and thymus-independent antibody responses. J. Exp. Med. 140, 126–145 (1974).

    Article  CAS  Google Scholar 

  10. Engel, P. et al. Abnormal B lymphocyte development, activation and differentiation in mice that lack or overexpress the CD19 signal transduction molecule. Immunity 3, 39–50 (1995).

    Article  CAS  Google Scholar 

  11. Ahearn, J.M. et al. Disruption of the Cr2 locus results in a reduction in B-1a cells and in an impaired B cell response to T-dependent antigen. Immunity 4, 251–262 (1996).

    Article  CAS  Google Scholar 

  12. Croix, D.A. et al. Antibody response to a T-dependent antigen requires B cell expression of complement receptors. J. Exp. Med. 183, 1857–1864 (1996).

    Article  CAS  Google Scholar 

  13. Dempsey, P.W., Allison, M.E., Akkaraju, S., Goodnow, C.C. & Fearon, D.T. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 271, 348–350 (1996).

    Article  CAS  Google Scholar 

  14. Papamichail, M. et al. Complement dependence of localisation of aggregated IgG in germinal centres. Scand J. Immunol. 4, 343–347 (1975).

    Article  CAS  Google Scholar 

  15. Tew, J.G., Kosco, M.H., Burton, G.F. & Szakal, A.K. Follicular dendritic cells as accessory cells. Immunol. Rev. 117, 185–211 (1990).

    Article  CAS  Google Scholar 

  16. Wessels, M.R. et al. Studies of group B streptococcal infection in mice deficient in complement component C3 or C4 demonstrate an essential role for complement in both innate and acquired immunity. Proc. Natl. Acad. Sci. USA 92, 11490–11494 (1995).

    Article  CAS  Google Scholar 

  17. Reid, R.R. et al. Endotoxin shock in antibody-deficient mice: unraveling the role of natural antibody and complement in the clearance of lipopolysaccharide. J. Immunol. 159, 970–975 (1997).

    CAS  PubMed  Google Scholar 

  18. Morgan, B. & Walport, M. Complement deficiency and disease. Immunol. Today 12, 301–306 (1991).

    Article  CAS  Google Scholar 

  19. Daniels, C.A., Borsos, T., Rapp, H.J., Snyderman, R. & Notkins, A.L. Neutralization of sensitized virus by the fourth component of complement. Science 165, 508–509 (1969).

    Article  CAS  Google Scholar 

  20. Linscott, W.D. & Levinson, W.E. Complement components required for virus neutralization by early immunoglobulin antibody. Proc. Natl. Acad. Sci. USA 64, 520–527 (1969).

    Article  CAS  Google Scholar 

  21. Welsh, R.M. Jr, Lampert, P.W., Burner, P.A. & Oldstone, M.B. Antibody-complement interactions with purified lymphocytic choriomeningitis virus. Virology 73, 59–71 (1976).

    Article  Google Scholar 

  22. Da Costa, X.J. et al. Humoral response to herpes simplex virus is complement-dependent. Proc. Natl. Acad. Sci. USA 96, 12708–12712 (1999).

    Article  CAS  Google Scholar 

  23. Ochsenbein, A.F. et al. Protective T cell–independent antiviral antibody responses are dependent on complement. J. Exp. Med. 190, 1165–1174 (1999).

    Article  CAS  Google Scholar 

  24. Graham, M.B. & Braciale, T.J. Resistance to and recovery from lethal influenza virus infection in B lymphocyte-deficient mice. J. Exp. Med. 186, 2063–2068 (1997).

    Article  CAS  Google Scholar 

  25. Gerhard, W., Mozdzanowska, K., Furchner, M., Washko, G. & Maiese, K. Role of the B-cell response in recovery of mice from primary influenza virus infection. Immunol. Rev. 159, 95–103 (1997).

    Article  CAS  Google Scholar 

  26. Doherty, P.C. et al. Effector CD4+ and CD8+ T-cell mechanisms in the control of respiratory virus infections. Immunol. Rev. 159, 105–117 (1997).

    Article  CAS  Google Scholar 

  27. Fischer, M.B. et al. Regulation of the B cell response to T-dependent antigens by classical pathway complement. J. Immunol. 157, 549–556 (1996).

    CAS  PubMed  Google Scholar 

  28. Bachmann, M.F. & Kundig, T.M. In vivo versus In vitro assays for assessment of T- and B-cell function. Curr. Opin. Immunol. 6, 320–326 (1994).

    Article  CAS  Google Scholar 

  29. Bachmann, M.F., Kundig, T.M., Hengartner, H. & Zinkernagel, R.M. Regulation of IgG antibody titers by the amount persisting of immune-complexed antigen. Eur J. Immunol. 24, 2567–2570 (1994).

    Article  CAS  Google Scholar 

  30. Huber, V.C., Lynch, J.M., Bucher, D.J., Le, J. & Metzger, D.W. Fc receptor-mediated phagocytosis makes a significant contribution to clearance of influenza virus infections. J. Immunol. 166, 7381–7388 (2001).

    Article  CAS  Google Scholar 

  31. Guinamard, R., Okigaki, M., Schlessinger, J. & Ravetch, J. Absence of marginal zone B cells in Pyk-2-deficient mice defines their role in the humoral response. Nature Immunol. 1, 31–36 (2000).

    Article  CAS  Google Scholar 

  32. Klein, M.A. et al. Complement facilitates early prion pathogenesis. Nature Med. 7, 488–492 (2001).

    Article  CAS  Google Scholar 

  33. Mabbott, N.A., Bruce, M.E., Botto, M., Walport, M.J. & Pepys, M.B. Temporary depletion of complement component C3 or genetic deficiency of C1q significantly delays onset of scrapie. Nature Med. 7, 485–487 (2001).

    Article  CAS  Google Scholar 

  34. Nataf, S., Davoust, N., Ames, R.S. & Barnum, S.R. Human T cells express the C5a receptor and are chemoattracted to C5a. J. Immunol. 162, 4018–4023 (1999).

    CAS  PubMed  Google Scholar 

  35. Nataf, S., Carroll, S.L., Wetsel, R.A., Szalai, A.J. & Barnum, S.R. Attenuation of experimental autoimmune demyelination in complement-deficient mice. J. Immunol. 165, 5867–5873 (2000).

    Article  CAS  Google Scholar 

  36. Wang, Y., Rollins, S.A., Madri, J.A. & Matis, L.A. Anti-C5 monoclonal antibody therapy prevents collagen-induced arthritis and ameliorates established disease. Proc. Natl. Acad. Sci. USA 92, 8955–8959 (1995).

    Article  CAS  Google Scholar 

  37. Hopken, U.E., Lu, B., Gerard, N.P. & Gerard, C. The C5a chemoattractant receptor mediates mucosal defence to infection. Nature 383, 86–89 (1996).

    Article  CAS  Google Scholar 

  38. Karp, C.L. et al. Identification of complement factor 5 as a susceptibility locus for experimental allergic asthma. Nature Immunol. 1, 221–226 (2000).

    Article  CAS  Google Scholar 

  39. Czermak, B.J. et al. Protective effects of C5a blockade in sepsis. Nature Med. 5, 788–792 (1999).

    Article  CAS  Google Scholar 

  40. Humbles, A.A. et al. A role for the C3a anaphylatoxin receptor in the effector phase of asthma. Nature 406, 998–1001 (2000).

    Article  CAS  Google Scholar 

  41. Bachmann, M.F., Ecabert, B. & Kopf, M. Influenza virus: a novel method to assess viral and neutralizing antibody titers in vitro. J. Immunol. Methods 225, 105–111 (1999).

    Article  CAS  Google Scholar 

  42. Ruedl, C., Bachmann, M.F. & Kopf, M. The antigen dose determines T helper subset development by regulation of CD40 ligand. Eur J. Immunol. 30, 2056–2064 (2000).

    Article  CAS  Google Scholar 

  43. Kopf, M. et al. OX40-deficient mice are defective in Th cell proliferation but are competent in generating B cell and CTL Responses after virus infection. Immunity 11, 699–708 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Ecabert and K. Lefrang for technical assistance, and G. Köhler for histology. A. Gallimore was supported by The Wellcome Trust (GR056527MA). The Basel Institute for Immunology was founded and supported by F. Hoffmann LaRoche.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manfred Kopf or Martin F. Bachmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopf, M., Abel, B., Gallimore, A. et al. Complement component C3 promotes T-cell priming and lung migration to control acute influenza virus infection. Nat Med 8, 373–378 (2002). https://doi.org/10.1038/nm0402-373

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0402-373

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing