Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The brown fat–enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis

Abstract

Brown fat activates uncoupled respiration in response to cold temperature and contributes to systemic metabolic homeostasis. To date, the metabolic action of brown fat has been primarily attributed to its role in fuel oxidation and uncoupling protein 1 (UCP1)-mediated thermogenesis. Whether brown fat engages other tissues through secreted factors remains largely unexplored. Here we show that neuregulin 4 (Nrg4), a member of the epidermal growth factor (EGF) family of extracellular ligands, is highly expressed in adipose tissues, enriched in brown fat and markedly increased during brown adipocyte differentiation. Adipose tissue Nrg4 expression was reduced in rodent and human obesity. Gain- and loss-of-function studies in mice demonstrated that Nrg4 protects against diet-induced insulin resistance and hepatic steatosis through attenuating hepatic lipogenic signaling. Mechanistically, Nrg4 activates ErbB3 and ErbB4 signaling in hepatocytes and negatively regulates de novo lipogenesis mediated by LXR and SREBP1c in a cell-autonomous manner. These results establish Nrg4 as a brown fat–enriched endocrine factor with therapeutic potential for the treatment of obesity-associated disorders, including type 2 diabetes and nonalcoholic fatty liver disease (NAFLD).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of Nrg4 as a brown fat–enriched secreted protein.
Figure 2: Nrg4 binds to hepatocytes and is dispensable for defense against cold.
Figure 3: Nrg4 deficiency exacerbates diet-induced hepatic steatosis.
Figure 4: Nrg4 cell-autonomously attenuates de novo lipogenesis in hepatocytes.
Figure 5: Nrg4 expression in adipose tissue is reduced in mouse and human obesity.
Figure 6: Transgenic expression of Nrg4 alleviates diet-induced fatty liver through attenuating lipogenesis.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

Gene Expression Omnibus

References

  1. Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Kozak, L.P. & Harper, M.E. Mitochondrial uncoupling proteins in energy expenditure. Annu. Rev. Nutr. 20, 339–363 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Lowell, B.B. et al. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 366, 740–742 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Yoneshiro, T. et al. Recruited brown adipose tissue as an antiobesity agent in humans. J. Clin. Invest. 123, 3404–3408 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bartelt, A. et al. Brown adipose tissue activity controls triglyceride clearance. Nat. Med. 17, 200–205 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. van der Lans, A.A. et al. Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J. Clin. Invest. 123, 3395–3403 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nedergaard, J., Bengtsson, T. & Cannon, B. Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 293, E444–E452 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Cypess, A.M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. van Marken Lichtenbelt, W.D. et al. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500–1508 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Virtanen, K.A. et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Enerbäck, S. Human brown adipose tissue. Cell Metab. 11, 248–252 (2010).

    Article  PubMed  CAS  Google Scholar 

  12. Nedergaard, J. & Cannon, B. The changed metabolic world with human brown adipose tissue: therapeutic visions. Cell Metab. 11, 268–272 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Petrovic, N. et al. Chronic peroxisome proliferator-activated receptor γ (PPARγ) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J. Biol. Chem. 285, 7153–7164 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Wu, J. et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366–376 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cypess, A.M. et al. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat. Med. 19, 635–639 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jespersen, N.Z. et al. A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans. Cell Metab. 17, 798–805 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Seale, P. et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454, 961–967 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Enerbäck, S. et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387, 90–94 (1997).

    Article  PubMed  Google Scholar 

  19. Feldmann, H.M., Golozoubova, V., Cannon, B. & Nedergaard, J. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab. 9, 203–209 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Liu, X. et al. Paradoxical resistance to diet-induced obesity in UCP1-deficient mice. J. Clin. Invest. 111, 399–407 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kadowaki, T. et al. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Invest. 116, 1784–1792 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Trujillo, M.E. & Scherer, P.E. Adipose tissue-derived factors: impact on health and disease. Endocr. Rev. 27, 762–778 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Waki, H. & Tontonoz, P. Endocrine functions of adipose tissue. Annu. Rev. Pathol. 2, 31–56 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Angelin, B., Larsson, T.E. & Rudling, M. Circulating fibroblast growth factors as metabolic regulators—a critical appraisal. Cell Metab. 16, 693–705 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Potthoff, M.J., Kliewer, S.A. & Mangelsdorf, D.J. Endocrine fibroblast growth factors 15/19 and 21: from feast to famine. Genes Dev. 26, 312–324 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pedersen, B.K. & Febbraio, M.A. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 8, 457–465 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Kim, K.H. et al. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat. Med. 19, 83–92 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Karsenty, G. & Ferron, M. The contribution of bone to whole-organism physiology. Nature 481, 314–320 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Schneider, M.R. & Wolf, E. The epidermal growth factor receptor ligands at a glance. J. Cell. Physiol. 218, 460–466 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Holbro, T. & Hynes, N.E. ErbB receptors: directing key signaling networks throughout life. Annu. Rev. Pharmacol. Toxicol. 44, 195–217 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Bublil, E.M. & Yarden, Y. The EGF receptor family: spearheading a merger of signaling and therapeutics. Curr. Opin. Cell Biol. 19, 124–134 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Chen, Y. et al. SPD—a web-based secreted protein database. Nucleic Acids Res. 33, D169–D173 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Odiete, O., Hill, M.F. & Sawyer, D.B. Neuregulin in cardiovascular development and disease. Circ. Res. 111, 1376–1385 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hayes, N.V., Newsam, R.J., Baines, A.J. & Gullick, W.J. Characterization of the cell membrane-associated products of the neuregulin 4 gene. Oncogene 27, 715–720 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Harari, D. et al. Neuregulin-4: a novel growth factor that acts through the ErbB-4 receptor tyrosine kinase. Oncogene 18, 2681–2689 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Müller, H., Dai, G. & Soares, M.J. Placental lactogen-I (PL-I) target tissues identified with an alkaline phosphatase-PL-I fusion protein. J. Histochem. Cytochem. 46, 737–743 (1998).

    Article  PubMed  Google Scholar 

  37. Horton, J.D., Goldstein, J.L. & Brown, M.S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109, 1125–1131 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Carver, R.S., Stevenson, M.C., Scheving, L.A. & Russell, W.E. Diverse expression of ErbB receptor proteins during rat liver development and regeneration. Gastroenterology 123, 2017–2027 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Olayioye, M.A., Beuvink, I., Horsch, K., Daly, J.M. & Hynes, N.E. ErbB receptor–induced activation of stat transcription factors is mediated by Src tyrosine kinases. J. Biol. Chem. 274, 17209–17218 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Jones, F.E., Welte, T., Fu, X.Y. & Stern, D.F. ErbB4 signaling in the mammary gland is required for lobuloalveolar development and Stat5 activation during lactation. J. Cell Biol. 147, 77–88 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Repa, J.J. et al. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRα and LXRβ. Genes Dev. 14, 2819–2830 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schultz, J.R. et al. Role of LXRs in control of lipogenesis. Genes Dev. 14, 2831–2838 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stöcklin, E., Wissler, M., Gouilleux, F. & Groner, B. Functional interactions between Stat5 and the glucocorticoid receptor. Nature 383, 726–728 (1996).

    Article  PubMed  Google Scholar 

  44. Gregor, M.F. & Hotamisligil, G.S. Inflammatory mechanisms in obesity. Annu. Rev. Immunol. 29, 415–445 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Odegaard, J.I. & Chawla, A. Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis. Science 339, 172–177 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Osborn, O. & Olefsky, J.M. The cellular and signaling networks linking the immune system and metabolism in disease. Nat. Med. 18, 363–374 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Hotamisligil, G.S., Shargill, N.S. & Spiegelman, B.M. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. Kohjima, M. et al. SREBP-1c, regulated by the insulin and AMPK signaling pathways, plays a role in nonalcoholic fatty liver disease. Int. J. Mol. Med. 21, 507–511 (2008).

    CAS  PubMed  Google Scholar 

  49. Shimomura, I., Bashmakov, Y. & Horton, J.D. Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus. J. Biol. Chem. 274, 30028–30032 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Knebel, B. et al. Liver-specific expression of transcriptionally active SREBP-1c is associated with fatty liver and increased visceral fat mass. PLoS ONE 7, e31812 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shimano, H. et al. Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. J. Clin. Invest. 99, 846–854 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tang, J.J. et al. Inhibition of SREBP by a small molecule, betulin, improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques. Cell Metab. 13, 44–56 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Moon, Y.A. et al. The Scap/SREBP pathway is essential for developing diabetic fatty liver and carbohydrate-induced hypertriglyceridemia in animals. Cell Metab. 15, 240–246 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rosell, M. et al. Brown and white adipose tissues. Intrinsic differences in gene expression and response to cold exposure in mice. Am. J. Physiol. Endocrinol. Metab. 306, E945–E964 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Klein, J., Fasshauer, M., Klein, H.H., Benito, M. & Kahn, C.R. Novel adipocyte lines from brown fat: a model system for the study of differentiation, energy metabolism, and insulin action. Bioessays 24, 382–388 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Lin, J. & Linzer, D.I. Induction of megakaryocyte differentiation by a novel pregnancy-specific hormone. J. Biol. Chem. 274, 21485–21489 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Leahy, D.J., Dann, C.E. III, Longo, P., Perman, B. & Ramyar, K.X. A mammalian expression vector for expression and purification of secreted proteins for structural studies. Protein Expr. Purif. 20, 500–506 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Lin, J. et al. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 119, 121–135 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Li, S. et al. Genome-wide coactivation analysis of PGC-1alpha identifies BAF60a as a regulator of hepatic lipid metabolism. Cell Metab. 8, 105–117 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P. Dempsey (University of Colorado) for ErbB4-Min6 cells, Y. Yarden (Weizmann Institute of Science) for ErbB expression plasmids, D. Leahy (Johns Hopkins University) for expression constructs for ErbB3 and ErbB4 extracellular domains, D. Threadgill (Texas A&M University) for Erbb3flox/flox mice and A. Saltiel for discussions. We are grateful to Q. Yu and L. Wang for technical support, the lab members for discussion, and the staff at the University of Michigan Transgenic Animal Model Core and the metabolic phenotyping core supported by Michigan Diabetes Research and Training Center (DK020572) and Nutrition Obesity Research Center (DK089503). This work was supported by the US National Institutes of Health (DK077086 and DK095151, J.D.L.; DK097608, X.S.) and a grant from Novo Nordisk. S.L. and G.-X.W. were supported by Scientist Development Grant and Predoctoral Fellowship, respectively, from the American Heart Association.

Author information

Authors and Affiliations

Authors

Contributions

J.D.L., G.-X.W. and X.-Y.Z. conceived the project and designed research. G.-X.W., X.-Y.Z., Z. Chen, Z. Cozacov, S.L. and Z.-X.M. performed metabolic and molecular studies; M.K., A.D. and M.B. performed human studies. D.Z., A.L.O. and X.S. performed lipid profile analysis. G.-X.W. and J.D.L. wrote the manuscript.

Corresponding author

Correspondence to Jiandie D Lin.

Ethics declarations

Competing interests

This work was partially supported by a research agreement with Novo Nordisk.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 6608 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, GX., Zhao, XY., Meng, ZX. et al. The brown fat–enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis. Nat Med 20, 1436–1443 (2014). https://doi.org/10.1038/nm.3713

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3713

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing