Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Altered translation of GATA1 in Diamond-Blackfan anemia

Abstract

Ribosomal protein haploinsufficiency occurs in diverse human diseases including Diamond-Blackfan anemia (DBA)1,2, congenital asplenia3 and T cell leukemia4. Yet, how mutations in genes encoding ubiquitously expressed proteins such as these result in cell-type– and tissue-specific defects remains unknown5. Here, we identify mutations in GATA1, encoding the critical hematopoietic transcription factor GATA-binding protein-1, that reduce levels of full-length GATA1 protein and cause DBA in rare instances. We show that ribosomal protein haploinsufficiency, the more common cause of DBA, can lead to decreased GATA1 mRNA translation, possibly resulting from a higher threshold for initiation of translation of this mRNA in comparison with other mRNAs. In primary hematopoietic cells from patients with mutations in RPS19, encoding ribosomal protein S19, the amplitude of a transcriptional signature of GATA1 target genes was globally and specifically reduced, indicating that the activity, but not the mRNA level, of GATA1 is decreased in patients with DBA associated with mutations affecting ribosomal proteins. Moreover, the defective hematopoiesis observed in patients with DBA associated with ribosomal protein haploinsufficiency could be partially overcome by increasing GATA1 protein levels. Our results provide a paradigm by which selective defects in translation due to mutations affecting ubiquitous ribosomal proteins can result in human disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A GATA1 mutation in DBA impairs full-length GATA1 protein production.
Figure 2: Ribosomal protein haploinsufficiency results in reduced translation of GATA1.
Figure 3: Ribosomal protein deficiency or translation factor inhibition impairs GATA1 translation.
Figure 4: Global disruption of GATA1 transcriptional activity in patients with DBA and rescue of ribosomal protein haploinsufficiency with GATA1 transduction.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

Gene Expression Omnibus

NCBI Reference Sequence

References

  1. Gazda, H.T. et al. Frameshift mutation in p53 regulator RPL26 is associated with multiple physical abnormalities and a specific pre-ribosomal RNA processing defect in diamond-blackfan anemia. Hum. Mutat. 33, 1037–1044 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lipton, J.M. & Ellis, S.R. Diamond-Blackfan anemia: diagnosis, treatment, and molecular pathogenesis. Hematol. Oncol. Clin. North Am. 23, 261–282 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bolze, A. et al. Ribosomal protein SA haploinsufficiency in humans with isolated congenital asplenia. Science 340, 976–978 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. De Keersmaecker, K. et al. Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nat. Genet. 45, 186–190 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Xue, S. & Barna, M. Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nat. Rev. Mol. Cell Biol. 13, 355–369 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nathan, D.G., Clarke, B.J., Hillman, D.G., Alter, B.P. & Housman, D.E. Erythroid precursors in congenital hypoplastic (Diamond-Blackfan) anemia. J. Clin. Invest. 61, 489–498 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Weiss, M.J., Mason, P.J. & Bessler, M. What's in a name? J. Clin. Invest. 122, 2346–2349 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Horos, R. et al. Ribosomal deficiencies in Diamond-Blackfan anemia impair translation of transcripts essential for differentiation of murine and human erythroblasts. Blood 119, 262–272 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Torihara, H. et al. Erythropoiesis failure due to RPS19 deficiency is independent of an activated Tp53 response in a zebrafish model of Diamond-Blackfan anaemia. Br. J. Haematol. 152, 648–654 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Jaako, P. et al. Mice with ribosomal protein S19 deficiency develop bone marrow failure and symptoms like patients with Diamond-Blackfan anemia. Blood 118, 6087–6096 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Sankaran, V.G. et al. Exome sequencing identifies GATA1 mutations resulting in Diamond-Blackfan anemia. J. Clin. Invest. 122, 2439–2443 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Orkin, S.H. & Zon, L.I. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132, 631–644 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wechsler, J. et al. Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat. Genet. 32, 148–152 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Peabody, D.S. Translation initiation at an ACG triplet in mammalian cells. J. Biol. Chem. 262, 11847–11851 (1987).

    CAS  PubMed  Google Scholar 

  15. Dutt, S. et al. Haploinsufficiency for ribosomal protein genes causes selective activation of p53 in human erythroid progenitor cells. Blood 117, 2567–2576 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Flygare, J. et al. Deficiency of ribosomal protein S19 in CD34+ cells generated by siRNA blocks erythroid development and mimics defects seen in Diamond-Blackfan anemia. Blood 105, 4627–4634 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Sankaran, V.G. et al. MicroRNA-15a and -16–1 act via MYB to elevate fetal hemoglobin expression in human trisomy 13. Proc. Natl. Acad. Sci. USA 108, 1519–1524 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rousseau, D., Kaspar, R., Rosenwald, I., Gehrke, L. & Sonenberg, N. Translation initiation of ornithine decarboxylase and nucleocytoplasmic transport of cyclin D1 mRNA are increased in cells overexpressing eukaryotic initiation factor 4E. Proc. Natl. Acad. Sci. USA 93, 1065–1070 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kondrashov, N. et al. Ribosome-mediated specificity in Hox mRNA translation and vertebrate tissue patterning. Cell 145, 383–397 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dieterich, D.C., Link, A.J., Graumann, J., Tirrell, D.A. & Schuman, E.M. Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proc. Natl. Acad. Sci. USA 103, 9482–9487 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cmejlova, J. et al. Translational efficiency in patients with Diamond-Blackfan anemia. Haematologica 91, 1456–1464 (2006).

    CAS  PubMed  Google Scholar 

  22. Garçon, L. et al. Ribosomal and hematopoietic defects in induced pluripotent stem cells derived from Diamond Blackfan anemia patients. Blood 122, 912–921 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shah, P., Ding, Y., Niemczyk, M., Kudla, G. & Plotkin, J.B. Rate-limiting steps in yeast protein translation. Cell 153, 1589–1601 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sonenberg, N., Hershey, J.W.B. & Mathews, M. Translational Control of Gene Expression (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 2000).

  25. Moerke, N.J. et al. Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G. Cell 128, 257–267 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Santini, E. et al. Exaggerated translation causes synaptic and behavioural aberrations associated with autism. Nature 493, 411–415 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Gkogkas, C.G. et al. Autism-related deficits via dysregulated eIF4E-dependent translational control. Nature 493, 371–377 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Gebauer, F. & Hentze, M.W. Molecular mechanisms of translational control. Nat. Rev. Mol. Cell Biol. 5, 827–835 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Babendure, J.R., Babendure, J.L., Ding, J.H. & Tsien, R.Y. Control of mammalian translation by mRNA structure near caps. RNA 12, 851–861 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kozak, M. An analysis of vertebrate mRNA sequences: intimations of translational control. J. Cell Biol. 115, 887–903 (1991).

    Article  CAS  PubMed  Google Scholar 

  31. Kobayashi, E., Shimizu, R., Kikuchi, Y., Takahashi, S. & Yamamoto, M. Loss of the Gata1 gene IE exon leads to variant transcript expression and the production of a GATA1 protein lacking the N-terminal domain. J. Biol. Chem. 285, 773–783 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Gazda, H.T. et al. Defective ribosomal protein gene expression alters transcription, translation, apoptosis, and oncogenic pathways in Diamond-Blackfan anemia. Stem Cells 24, 2034–2044 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lansdorp, P.M. & Dragowska, W. Long-term erythropoiesis from constant numbers of CD34+ cells in serum-free cultures initiated with highly purified progenitor cells from human bone marrow. J. Exp. Med. 175, 1501–1509 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ebert, B.L. et al. Identification of RPS14 as a 5q– syndrome gene by RNA interference screen. Nature 451, 335–339 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hu, J. et al. Isolation and functional characterization of human erythroblasts at distinct stages: implications for understanding of normal and disordered erythropoiesis in vivo. Blood 121, 3246–3253 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Moniz, H. et al. Primary hematopoietic cells from DBA patients with mutations in RPL11 and RPS19 genes exhibit distinct erythroid phenotype in vitro. Cell Death Dis. 3, e356 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Trainor, C.D., Mas, C., Archambault, P., Di Lello, P. & Omichinski, J.G. GATA-1 associates with and inhibits p53. Blood 114, 165–173 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chylicki, K. et al. p53-mediated differentiation of the erythroleukemia cell line K562. Cell Growth Differ. 11, 315–324 (2000).

    CAS  PubMed  Google Scholar 

  40. Lodish, H.F. Model for the regulation of mRNA translation applied to haemoglobin synthesis. Nature 251, 385–388 (1974).

    Article  CAS  PubMed  Google Scholar 

  41. Sankaran, V.G. et al. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science 322, 1839–1842 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Welch, J.J. et al. Global regulation of erythroid gene expression by transcription factor GATA-1. Blood 104, 3136–3147 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Matys, V. et al. TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 34, D108–D110 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the patients with DBA and their families for their inspiration and encouragement. We thank A. Wakabayashi and J. Ulirsch for valuable assistance and D.G. Nathan, S.H. Orkin, D.A. Williams, S.T. Chou, G.W. Bell, C.R. Walkley, J. Flygare and D.P. Bartel for valuable comments and advice. We are grateful to L. Solomon, L. Gaffney and T. DiCesare for assistance with illustrations. This work was supported by the German National Academic Foundation (to L.S.L.), US National Institutes of Health (NIH) grants R01 HL107558 and K02 HL111156 and a grant from the DBA Foundation (to H.T.G.), NIH grant P01 HL32262 (to H.F.L.), NIH grant U54 HG003067-09 (to E.S.L.) and NIH grant R21 HL120791-01 and a March of Dimes Basil O'Connor Scholar Award (to V.G.S.).

Author information

Authors and Affiliations

Authors

Contributions

L.S.L. and V.G.S. conceived the project; L.S.L., H.T.G., J.C.E., S.W.E., R.G., A.H.B., C.A.S. and V.G.S. performed the research; L.S.L., H.T.G., P.T., H.F.L., E.S.L. and V.G.S. analyzed data; T.I.G. and J.R.G. provided clinical assessments; and L.S.L., H.F.L., E.S.L. and V.G.S. wrote the paper with input from all authors.

Corresponding author

Correspondence to Vijay G Sankaran.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–20 and Supplementary Tables 1–7 (PDF 17080 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ludwig, L., Gazda, H., Eng, J. et al. Altered translation of GATA1 in Diamond-Blackfan anemia. Nat Med 20, 748–753 (2014). https://doi.org/10.1038/nm.3557

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3557

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing