Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

RIPK3 as a potential therapeutic target for Gaucher's disease

Subjects

Abstract

Gaucher's disease (GD), an inherited metabolic disorder caused by mutations in the glucocerebrosidase gene (GBA), is the most common lysosomal storage disease1. Heterozygous mutations in GBA are a major risk factor for Parkinson's disease2. GD is divided into three clinical subtypes based on the absence (type 1) or presence (types 2 and 3) of neurological signs. Type 1 GD was the first lysosomal storage disease (LSD) for which enzyme therapy became available, and although infusions of recombinant glucocerebrosidase (GCase) ameliorate the systemic effects of GD, the lack of efficacy for the neurological manifestations, along with the considerable expense3 and inconvenience of enzyme therapy for patients, renders the search for alternative or complementary therapies paramount. Glucosylceramide and glucosylsphingosine accumulation in the brain leads to massive neuronal loss in patients with neuronopathic GD (nGD)4 and in nGD mouse models5,6,7. However, the mode of neuronal death is not known. Here, we show that modulating the receptor-interacting protein kinase-3 (Ripk3) pathway markedly improves neurological and systemic disease in a mouse model of GD. Notably, Ripk3 deficiency substantially improved the clinical course of GD mice, with increased survival and motor coordination and salutary effects on cerebral as well as hepatic injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neuronal cell death in mice with GD is nonapoptotic.
Figure 2: Elevation of Ripk1 and Ripk3 in brains from mice with GD and Krabbe's disease.
Figure 3: Ripk3 deficiency improves the clinical course of mice with GD.
Figure 4: The clinical course of mice with GD is Tnf independent.

Similar content being viewed by others

References

  1. Futerman, A.H. & van Meer, G. The cell biology of lysosomal storage disorders. Nat. Rev. Mol. Cell Biol. 5, 554–565 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Eblan, M.J., Walker, J.M. & Sidransky, E. The glucocerebrosidase gene and Parkinson′s disease in Ashkenazi Jews. N. Engl. J. Med. 352, 728–731 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Cox, T.M. Competing for the treasure in exceptions. Am. J. Hematol. 88, 163–165 (2013).

    Article  PubMed  Google Scholar 

  4. Wong, K. et al. Neuropathology provides clues to the pathophysiology of Gaucher disease. Mol. Genet. Metab. 82, 192–207 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Farfel-Becker, T. et al. Spatial and temporal correlation between neuron loss and neuroinflammation in a mouse model of neuronopathic Gaucher disease. Hum. Mol. Genet. 20, 1375–1386 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Vitner, E.B., Farfel-Becker, T., Eilam, R., Biton, I. & Futerman, A.H. Contribution of brain inflammation to neuronal cell death in neuronopathic forms of Gaucher′s disease. Brain 135, 1724–1735 (2012).

    Article  PubMed  Google Scholar 

  7. Enquist, I.B. et al. Murine models of acute neuronopathic Gaucher disease. Proc. Natl. Acad. Sci. USA 104, 17483–17488 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kanfer, J.N., Legler, G., Sullivan, J., Raghavan, S.S. & Mumford, R.A. The Gaucher mouse. Biochem. Biophys. Res. Commun. 67, 85–90 (1975).

    Article  CAS  PubMed  Google Scholar 

  9. Vandenabeele, P., Galluzzi, L., Vanden Berghe, T. & Kroemer, G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat. Rev. Mol. Cell Biol. 11, 700–714 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Feoktistova, M. et al. cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol. Cell 43, 449–463 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tenev, T. et al. The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol. Cell 43, 432–448 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Upton, J.W., Kaiser, W.J. & Mocarski, E.S. Virus inhibition of RIP3-dependent necrosis. Cell Host Microbe 7, 302–313 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lin, Y., Devin, A., Rodriguez, Y. & Liu, Z.G. Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev. 13, 2514–2526 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, D.-W. et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332–336 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Silke, J. & Strasser, A. The FLIP side of life. Sci. Signal. 6, pe2 (2013).

    Article  PubMed  CAS  Google Scholar 

  16. Oberst, A. et al. Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471, 363–367 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Trichonas, G. et al. Receptor interacting protein kinases mediate retinal detachment-induced photoreceptor necrosis and compensate for inhibition of apoptosis. Proc. Natl. Acad. Sci. USA 107, 21695–21700 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lin, J. et al. A role of RIP3-mediated macrophage necrosis in atherosclerosis development. Cell Rep. 3, 200–210 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Cho, Y.S. et al. Phosphorylation-driven assembly of the RIP1–RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–1123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Duprez, L. et al. RIP kinase–dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity 35, 908–918 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Roychowdhury, S., McMullen, M.R., Pisano, S.G., Liu, X. & Nagy, L.E. Absence of receptor interacting protein kinase 3 prevents ethanol-induced liver injury. Hepatology 57, 1773–1783 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Kang, T.-B., Yang, S.-H., Toth, B., Kovalenko, A. & Wallach, D. Caspase-8 blocks kinase RIPK3-mediated activation of the NLRP3 inflammasome. Immunity 38, 27–40 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Kovalenko, A. et al. Caspase-8 deficiency in epidermal keratinocytes triggers an inflammatory skin disease. J. Exp. Med. 206, 2161–2177 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee, P. et al. Dynamic expression of epidermal caspase 8 simulates a wound healing response. Nature 458, 519–523 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Kaiser, W.J. et al. RIP3 mediates the embryonic lethality of caspase-8–deficient mice. Nature 471, 368–372 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang, Y., Ma, J., Chen, Y. & Wu, M. Nucleocytoplasmic shuttling of receptor-interacting protein 3 (RIP3): identification of novel nuclear export and import signals in RIP3. J. Biol. Chem. 279, 38820–38829 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Suzuki, K. & Taniike, M. Murine model of genetic demyelinating disease: the twitcher mouse. Microsc. Res. Tech. 32, 204–214 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Vitner, E.B., Platt, F.M. & Futerman, A.H. Common and uncommon pathogenic cascades in lysosomal storage diseases. J. Biol. Chem. 285, 20423–20427 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vitner, E.B. et al. Altered expression and distribution of cathepsins in neuronopathic forms of Gaucher disease and in other sphingolipidoses. Hum. Mol. Genet. 19, 3583–3590 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Kelliher, M.A. et al. The death domain kinase RIP mediates the TNF-induced NF-κB signal. Immunity 8, 297–303 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Newton, K., Sun, X. & Dixit, V.M. Kinase RIP3 is dispensable for normal NF-κ Bs, signaling by the B-cell and T-cell receptors, tumor necrosis factor receptor 1, and Toll-like receptors 2 and 4. Mol. Cell. Biol. 24, 1464–1469 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Farfel-Becker, T., Vitner, E.B. & Futerman, A.H. Animal models for Gaucher disease research. Dis. Model. Mech. 4, 746–752 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wallach, D., Kovalenko, A. & Kang, T.-B. 'Necrosome'-induced inflammation: must cells die for it? Trends Immunol. 32, 505–509 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Chavez-Valdez, R., Martin, L.J., Flock, D.L. & Northington, F.J. Necrostatin-1 attenuates mitochondrial dysfunction in neurons and astrocytes following neonatal hypoxia-ischemia. Neuroscience 219, 192–203 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Rosenbaum, D.M. et al. Necroptosis, a novel form of caspase-independent cell death, contributes to neuronal damage in a retinal ischemia-reperfusion injury model. J. Neurosci. Res. 88, 1569–1576 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. You, Z. et al. Necrostatin-1 reduces histopathology and improves functional outcome after controlled cortical impact in mice. J. Cereb. Blood Flow Metab. 28, 1564–1573 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Jagtap, P.G. et al. Structure-activity relationship study of tricyclic necroptosis inhibitors. J. Med. Chem. 50, 1886–1895 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Zhu, S., Zhang, Y., Bai, G. & Li, H. Necrostatin-1 ameliorates symptoms in R6/2 transgenic mouse model of Huntington′s disease. Cell Death Dis. 2, e115 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kaiser, W.J. et al. Toll-like receptor 3–mediated necrosis via TRIF, RIP3 and MLKL. J. Biol. Chem. 288, 31268–31279 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sun, L. et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213–227 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Farfel-Becker, T. et al. No evidence for activation of the unfolded protein response in neuronopathic models of Gaucher disease. Hum. Mol. Genet. 18, 1482–1488 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Sango, K. et al. Mouse models of Tay-Sachs and Sandhoff diseases differ in neurologic phenotype and ganglioside metabolism. Nat. Genet. 11, 170–176 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Hahn, C.N. et al. Generalized CNS disease and massive GM1-ganglioside accumulation in mice defective in lysosomal acid β-galactosidase. Hum. Mol. Genet. 6, 205–211 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Pentchev, P.G. et al. A genetic storage disorder in BALB/C mice with a metabolic block in esterification of exogenous cholesterol. J. Biol. Chem. 259, 5784–5791 (1984).

    CAS  PubMed  Google Scholar 

  45. Narayan, N. et al. The NAD-dependent deacetylase SIRT2 is required for programmed necrosis. Nature 492, 199–204 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Lopez, M.E., Klein, A.D., Dimbil, U.J. & Scott, M.P. Anatomically defined neuron-based rescue of neurodegenerative Niemann-Pick type C disorder. J. Neurosci. 31, 4367–4378 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. van Raam, B.J., Ehrnhoefer, D.E., Hayden, M.R. & Salvesen, G.S. Intrinsic cleavage of receptor-interacting protein kinase-1 by caspase-6. Cell Death Differ. 20, 86–96 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Hung, T. et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat. Genet. 43, 621–629 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Han, J., Sridevi, P., Ramirez, M., Ludwig, K.J. & Wang, J.Y.J. β-Catenin-dependent lysosomal targeting of internalized tumor necrosis factor-α suppresses caspase-8 activation in apoptosis-resistant colon cancer cells. Mol. Biol. Cell 24, 465–473 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank B. Cachón-González (University of Cambridge) for providing twitcher mouse tissue, D. Wallach (Weizmann Institute of Science, Israel) for providing Tnf and Ripk3 knockout mice, R. Schiffmann (Baylor Research Institute) for postmortem human brain tissue, V. Kiss (Weizmann Institute of Science) for help with fluorescence microscopy and N. Platt (University of Oxford) for helpful comments. This work was supported by the Children′s Gaucher Research Fund. A.H.F. is the incumbent of an endowed professorial chair supported by the Joseph Meyerhoff family. F.M.P. is a Royal Society Wolfson Research Merit Award holder.

Author information

Authors and Affiliations

Authors

Contributions

E.B.V. and R.S. planned and performed most of the experiments and wrote the manuscript. T.F.-B., A.M., M.A. and A.D.K. performed specific experiments, and F.M.P. and T.M.C. participated in experimental design and provided tissues. A.H.F. participated in experimental design, supervised and funded the project and wrote the manuscript.

Corresponding author

Correspondence to Anthony H Futerman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 (PDF 107 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitner, E., Salomon, R., Farfel-Becker, T. et al. RIPK3 as a potential therapeutic target for Gaucher's disease. Nat Med 20, 204–208 (2014). https://doi.org/10.1038/nm.3449

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3449

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing