Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Coordinate activation of Shh and PI3K signaling in PTEN-deficient glioblastoma: new therapeutic opportunities

Subjects

Abstract

In glioblastoma, phosphatidylinositol 3-kinase (PI3K) signaling is frequently activated by loss of the tumor suppressor phosphatase and tensin homolog (PTEN)1. However, it is not known whether inhibiting PI3K represents a selective and effective approach for treatment. We interrogated large databases and found that sonic hedgehog (SHH) signaling is activated in PTEN-deficient glioblastoma. We demonstrate that the SHH and PI3K pathways synergize to promote tumor growth and viability in human PTEN-deficient glioblastomas. A combination of PI3K and SHH signaling inhibitors not only suppressed the activation of both pathways but also abrogated S6 kinase (S6K) signaling. Accordingly, targeting both pathways simultaneously resulted in mitotic catastrophe and tumor apoptosis and markedly reduced the growth of PTEN-deficient glioblastomas in vitro and in vivo. The drugs tested here appear to be safe in humans; therefore, this combination may provide a new targeted treatment for glioblastoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Coordinate activation of the SHH and PI3K pathways in PTEN-deficient glioblastoma.
Figure 2: A combination of PI3K and SMO inhibition reduces tumor growth in vivo.
Figure 3: Cellular basis for the efficacy of combination treatment.
Figure 4: Combination therapy targets the PI3K, SHH and S6K pathways.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Cerami, E., Demir, E., Schultz, N., Taylor, B.S. & Sander, C. Automated network analysis identifies core pathways in glioblastoma. PLoS ONE 5, e8918 (2010).

    Article  Google Scholar 

  2. Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996 (2005).

    Article  CAS  Google Scholar 

  3. Quant, E.C. & Wen, P.Y. Novel medical therapeutics in glioblastomas, including targeted molecular therapies, current and future clinical trials. Neuroimaging Clin. N. Am. 20, 425–448 (2010).

    Article  Google Scholar 

  4. Koul, D. et al. Antitumor activity of NVP-BKM120—a selective pan class I PI3 kinase inhibitor showed differential forms of cell death based on p53 status of glioma cells. Clin. Cancer Res. 18, 184–195 (2012).

    Article  CAS  Google Scholar 

  5. Maira, S.M. et al. Identification and characterization of NVP-BKM120, an orally available pan-class I PI3-kinase inhibitor. Mol. Cancer Ther. 11, 317–328 (2012).

    Article  CAS  Google Scholar 

  6. Phillips, H.S. et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9, 157–173 (2006).

    Article  CAS  Google Scholar 

  7. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

  8. Pandita, A., Aldape, K.D., Zadeh, G., Guha, A. & James, C.D. Contrasting in vivo and in vitro fates of glioblastoma cell subpopulations with amplified EGFR. Genes Chromosom. Cancer 39, 29–36 (2004).

    Article  CAS  Google Scholar 

  9. Venere, M., Fine, H.A., Dirks, P.B. & Rich, J.N. Cancer stem cells in gliomas: identifying and understanding the apex cell in cancer's hierarchy. Glia 59, 1148–1154 (2011).

    Article  Google Scholar 

  10. Pan, S. et al. Discovery of NVP-LDE225, a potent and selective Smoothened antagonist. ACS Med. Chem. Lett. 1, 130–134 (2010).

    Article  CAS  Google Scholar 

  11. Folkes, A.J. et al. The identification of 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-t hieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer. J. Med. Chem. 51, 5522–5532 (2008).

    Article  CAS  Google Scholar 

  12. Pollard, S.M. et al. Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 4, 568–580 (2009).

    Article  CAS  Google Scholar 

  13. Rubin, J.B. et al. A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors. Proc. Natl. Acad. Sci. USA 100, 13513–13518 (2003).

    Article  CAS  Google Scholar 

  14. Vakifahmetoglu, H., Olsson, M. & Zhivotovsky, B. Death through a tragedy: mitotic catastrophe. Cell Death Differ. 15, 1153–1162 (2008).

    Article  CAS  Google Scholar 

  15. Manning, B.D. Balancing Akt with S6K: implications for both metabolic diseases and tumorigenesis. J. Cell Biol. 167, 399–403 (2004).

    Article  CAS  Google Scholar 

  16. Dancey, J.E. Inhibitors of the mammalian target of rapamycin. Expert Opin. Investig. Drugs 14, 313–328 (2005).

    Article  CAS  Google Scholar 

  17. Tandon, P. et al. Requirement for ribosomal protein S6 kinase 1 to mediate glycolysis and apoptosis resistance induced by Pten deficiency. Proc. Natl. Acad. Sci. USA 108, 2361–2365 (2011).

    Article  CAS  Google Scholar 

  18. Chen, J.K., Taipale, J., Young, K.E., Maiti, T. & Beachy, P.A. Small molecule modulation of Smoothened activity. Proc. Natl. Acad. Sci. USA 99, 14071–14076 (2002).

    Article  CAS  Google Scholar 

  19. Choi, H.N. et al. Inhibition of S6K1 enhances glucose deprivation-induced cell death via downregulation of anti-apoptotic proteins in MCF-7 breast cancer cells. Biochem. Biophys. Res. Commun. 432, 123–128 (2013).

    Article  CAS  Google Scholar 

  20. Kenney, A.M. & Rowitch, D.H. Sonic hedgehog promotes G(1) cyclin expression and sustained cell cycle progression in mammalian neuronal precursors. Mol. Cell. Biol. 20, 9055–9067 (2000).

    Article  CAS  Google Scholar 

  21. Liang, J. & Slingerland, J.M. Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle 2, 339–345 (2003).

    Article  CAS  Google Scholar 

  22. Barbus, S. et al. Differential retinoic acid signaling in tumors of long- and short-term glioblastoma survivors. J. Natl. Cancer Inst. 103, 598–606 (2011).

    Article  CAS  Google Scholar 

  23. Lee, E.Y. et al. Hedgehog pathway–regulated gene networks in cerebellum development and tumorigenesis. Proc. Natl. Acad. Sci. USA 107, 9736–9741 (2010).

    Article  CAS  Google Scholar 

  24. Masi, A. et al. hERG1 channels are overexpressed in glioblastoma multiforme and modulate VEGF secretion in glioblastoma cell lines. Br. J. Cancer 93, 781–792 (2005).

    Article  CAS  Google Scholar 

  25. Workman, P., Clarke, P.A., Raynaud, F.I. & van Montfort, R.L. Drugging the PI3 kinome: from chemical tools to drugs in the clinic. Cancer Res. 70, 2146–2157 (2010).

    Article  CAS  Google Scholar 

  26. Xu, Q., Yuan, X., Liu, G., Black, K.L. & Yu, J.S. Hedgehog signaling regulates brain tumor-initiating cell proliferation and portends shorter survival for patients with PTEN-coexpressing glioblastomas. Stem Cells 26, 3018–3026 (2008).

    Article  CAS  Google Scholar 

  27. Becher, O.J. et al. Gli activity correlates with tumor grade in platelet-derived growth factor–induced gliomas. Cancer Res. 68, 2241–2249 (2008).

    Article  CAS  Google Scholar 

  28. Castellino, R.C. et al. Heterozygosity for Pten promotes tumorigenesis in a mouse model of medulloblastoma. PLoS ONE 5, e10849 (2010).

    Article  Google Scholar 

  29. Buonamici, S. et al. Interfering with resistance to smoothened antagonists by inhibition of the PI3K pathway in medulloblastoma. Sci. Transl. Med. 2, 51ra70 (2010).

    Article  Google Scholar 

  30. Riobó, N.A., Lu, K., Ai, X., Haines, G.M. & Emerson, C.P. Jr. Phosphoinositide 3-kinase and Akt are essential for Sonic Hedgehog signaling. Proc. Natl. Acad. Sci. USA 103, 4505–4510 (2006).

    Article  Google Scholar 

  31. Kenney, A.M., Widlund, H.R. & Rowitch, D.H. Hedgehog and PI-3 kinase signaling converge on Nmyc1 to promote cell cycle progression in cerebellar neuronal precursors. Development 131, 217–228 (2004).

    Article  CAS  Google Scholar 

  32. Mizuarai, S., Kawagishi, A. & Kotani, H. Inhibition of p70S6K2 down-regulates Hedgehog/GLI pathway in non-small cell lung cancer cell lines. Mol. Cancer 8, 44 (2009).

    Article  Google Scholar 

  33. Evangelista, M. et al. Kinome siRNA screen identifies regulators of ciliogenesis and hedgehog signal transduction. Sci. Signal. 1, ra7 (2008).

    Article  Google Scholar 

  34. Wang, Y. et al. The crosstalk of mTOR/S6K1 and Hedgehog pathways. Cancer Cell 21, 374–387 (2012).

    Article  CAS  Google Scholar 

  35. Eimer, S. et al. Cyclopamine cooperates with EGFR inhibition to deplete stem-like cancer cells in glioblastoma-derived spheroid cultures. Neuro-oncol. 14, 1441–1451 (2012).

    Article  CAS  Google Scholar 

  36. Ferruzzi, P. et al. In vitro and in vivo characterization of a novel Hedgehog signaling antagonist in human glioblastoma cell lines. Int. J. Cancer 131, E33–E44 (2012).

    Article  CAS  Google Scholar 

  37. Hsieh, A., Ellsworth, R. & Hsieh, D. Hedgehog/GLI1 regulates IGF dependent malignant behaviors in glioma stem cells. J. Cell. Physiol. 226, 1118–1127 (2011).

    Article  CAS  Google Scholar 

  38. Santoni, M. et al. Essential role of Gli proteins in glioblastoma multiforme. Curr. Protein Pept. Sci. 14, 133–140 (2013).

    Article  CAS  Google Scholar 

  39. Tremblay, M.R., McGovern, K., Read, M.A. & Castro, A.C. New developments in the discovery of small molecule Hedgehog pathway antagonists. Curr. Opin. Chem. Biol. 14, 428–435 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank V. Monrose and K. Jones for technical assistance and C. Stiles for helpful discussions. We thank N. Gray (Dana-Farber Cancer Institute) for PF-4708671 and C. David James (University of California San Francisco) for the hBT70 and hBT75 lines. This work was supported by an Austrian Programme for Advanced Research and Technology (APART) fellowship of the Austrian Academy of Sciences (M.G.F.), grants from the US National Institutes of Health (R.A.S.) and Novartis Pharmaceuticals.

Author information

Authors and Affiliations

Authors

Contributions

M.G.F., S.K.D., E.P. and R.A.S. wrote the manuscript with input from all authors. M.G.F., S.K.D., E.P., J.C., M.F.P.-M. and Yu Sun executed the in vitro studies and analyzed the in vitro and in vivo studies. A.L.K., Yanping Sun, Y.F., J.F.K., S.B. and M.D. performed the in vivo studies. M.A.T., K.L.L. and S.R. generated GBM lines and analyzed tumor pathology. D.S.S. and N.R. initiated the studies. B.T. and R.B. analyzed databases. J.Z. and Q.W. provided shRNA specific to PTEN.

Corresponding author

Correspondence to Rosalind A Segal.

Ethics declarations

Competing interests

This work was supported in part by grants from Novartis Institute of BioMedical research. J.F.K. is an employee of, and R.A.S. had a consulting agreement with, Novartis Institute of BioMedical Research.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 6026 kb)

Supplementary Table 1

Supplementary Table 1 (XLS 514 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruber Filbin, M., Dabral, S., Pazyra-Murphy, M. et al. Coordinate activation of Shh and PI3K signaling in PTEN-deficient glioblastoma: new therapeutic opportunities. Nat Med 19, 1518–1523 (2013). https://doi.org/10.1038/nm.3328

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3328

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer