Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding the hepatitis C virus life cycle paves the way for highly effective therapies

Abstract

More than two decades of intense research has provided a detailed understanding of hepatitis C virus (HCV), which chronically infects 2% of the world's population. This effort has paved the way for the development of antiviral compounds to spare patients from life-threatening liver disease. An exciting new era in HCV therapy dawned with the recent approval of two viral protease inhibitors, used in combination with pegylated interferon-α and ribavirin; however, this is just the beginning. Multiple classes of antivirals with distinct targets promise highly efficient combinations, and interferon-free regimens with short treatment duration and fewer side effects are the future of HCV therapy. Ongoing and future trials will determine the best antiviral combinations and whether the current seemingly rich pipeline is sufficient for successful treatment of all patients in the face of major challenges, such as HCV diversity, viral resistance, the influence of host genetics, advanced liver disease and other co-morbidities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Timeline of the milestones in HCV functional and antiviral research.
Figure 2: The HCV genome and polyprotein processing.
Figure 3: The HCV life cycle and points of intervention.

Similar content being viewed by others

References

  1. Thomas, D.L. Nat. Med. 19, 850–858 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Feld, J.J. & Hoofnagle, J.H. Mechanism of action of interferon and ribavirin in treatment of hepatitis C. Nature 436, 967–972 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Manns, M.P., Wedemeyer, H. & Cornberg, M. Treating viral hepatitis C: Efficacy, side effects, and complications. Gut 55, 1350–1359 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jacobson, I.M. et al. Telaprevir for previously untreated chronic hepatitis C virus infection. N. Engl. J. Med. 364, 2405–2416 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Poordad, F. et al. Boceprevir for untreated chronic HCV genotype 1 infection. N. Engl. J. Med. 364, 1195–1206 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sarrazin, C., Hezode, C., Zeuzem, S. & Pawlotsky, J.M. Antiviral strategies in hepatitis C virus infection. J. Hepatol. 56 (suppl. 1), S88–S100 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Liang, T.J. Nat. Med. 19, 869–878 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Choo, Q.L. et al. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244, 359–362 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Alter, H.J. et al. Detection of antibody to hepatitis C virus in prospectively followed transfusion recipients with acute and chronic non-A, non-B hepatitis. N. Engl. J. Med. 321, 1494–1500 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Kuo, G. et al. An assay for circulating antibodies to a major etiologic virus of human non-A, non-B hepatitis. Science 244, 362–364 (1989).

    Article  CAS  PubMed  Google Scholar 

  11. Bukh, J. Animal models for the study of hepatitis C virus infection and related liver disease. Gastroenterology 142, 1279–1287.e3 (2012).

    Article  PubMed  Google Scholar 

  12. Mercer, D.F. et al. Hepatitis C virus replication in mice with chimeric human livers. Nat. Med. 7, 927–933 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Dorner, M. et al. A genetically humanized mouse model for hepatitis C virus infection. Nature 474, 208–211 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lohmann, V. et al. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285, 110–113 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Bartosch, B., Dubuisson, J. & Cosset, F.L. Infectious hepatitis C virus pseudo-particles containing functional E1-E2 envelope protein complexes. J. Exp. Med. 197, 633–642 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hsu, M. et al. Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles. Proc. Natl. Acad. Sci. USA 100, 7271–7276 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wakita, T. et al. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat. Med. 11, 791–796 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lindenbach, B.D. et al. Complete replication of hepatitis C virus in cell culture. Science 309, 623–626 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Zhong, J. et al. Robust hepatitis C virus infection in vitro. Proc. Natl. Acad. Sci. USA 102, 9294–9299 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kapoor, A. et al. Characterization of a canine homolog of hepatitis C virus. Proc. Natl. Acad. Sci. USA 108, 11608–11613 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kapoor, A. et al. Identification of rodent homologs of hepatitis C virus and pegiviruses. MBio 4, e00216–e00213 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Quan, P.L. et al. Bats are a major natural reservoir for hepaciviruses and pegiviruses. Proc. Natl. Acad. Sci. USA 110, 8194–8199 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hoffman, B. & Liu, Q. Hepatitis C viral protein translation: Mechanisms and implications in developing antivirals. Liver Int. 31, 1449–1467 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Gottwein, J.M. & Bukh, J. Cutting the gordian knot-development and biological relevance of hepatitis C virus cell culture systems. Adv. Virus Res. 71, 51–133 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Bartenschlager, R., Penin, F., Lohmann, V. & Andre, P. Assembly of infectious hepatitis C virus particles. Trends Microbiol. 19, 95–103 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Negro, F. Steatosis and insulin resistance in response to treatment of chronic hepatitis C. J. Viral Hepat. 19 (suppl. 1), 42–47 (2012).

    Article  PubMed  Google Scholar 

  27. van der Meer, A.J. et al. Association between sustained virological response and all-cause mortality among patients with chronic hepatitis C and advanced hepatic fibrosis. J. Am. Med. Assoc. 308, 2584–2593 (2012).

    Article  CAS  Google Scholar 

  28. Kau, A., Vermehren, J. & Sarrazin, C. Treatment predictors of a sustained virologic response in hepatitis B and C. J. Hepatol. 49, 634–651 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Horner, S.M. & Gale, M. Jr. Nat. Med. 19, 879–888 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gastaminza, P. et al. Ultrastructural and biophysical characterization of hepatitis C virus particles produced in cell culture. J. Virol. 84, 10999–11009 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bassendine, M.F. et al. Hcv and the hepatic lipid pathway as a potential treatment target. J. Hepatol. 55, 1428–1440 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. André, P. et al. Characterization of low- and very-low-density hepatitis C virus RNA-containing particles. J. Virol. 76, 6919–6928 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Merz, A. et al. Biochemical and morphological properties of hepatitis C virus particles and determination of their lipidome. J. Biol. Chem. 286, 3018–3032 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Lindenbach, B.D. et al. Cell culture-grown hepatitis C virus is infectious in vivo and can be recultured in vitro. Proc. Natl. Acad. Sci. USA 103, 3805–3809 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chang, K.S., Jiang, J., Cai, Z. & Luo, G. Human apolipoprotein E is required for infectivity and production of hepatitis C virus in cell culture. J. Virol. 81, 13783–13793 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cheng, G. et al. A virocidal amphipathic α-helical peptide that inhibits hepatitis C virus infection in vitro. Proc. Natl. Acad. Sci. USA 105, 3088–3093 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Burton, D.R., Poignard, P., Stanfield, R.L. & Wilson, I.A. Broadly neutralizing antibodies present new prospects to counter highly antigenically diverse viruses. Science 337, 183–186 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gottwein, J.M. et al. Development and characterization of hepatitis C virus genotype 1–7 cell culture systems: Role of CD81 and scavenger receptor class B type I and effect of antiviral drugs. Hepatology 49, 364–377 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Meuleman, P. et al. In vivo evaluation of the cross-genotype neutralizing activity of polyclonal antibodies against hepatitis C virus. Hepatology 53, 755–762 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. von Hahn, T. et al. Hepatitis C virus continuously escapes from neutralizing antibody and T-cell responses during chronic infection in vivo. Gastroenterology 132, 667–678 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Farci, P. et al. Prevention of hepatitis C virus infection in chimpanzees by hyperimmune serum against the hypervariable region 1 of the envelope 2 protein. Proc. Natl. Acad. Sci. USA 93, 15394–15399 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Prentoe, J. et al. Hypervariable region 1 differentially impacts viability of hepatitis C virus strains of genotypes 1 to 6 and impairs virus neutralization. J. Virol. 85, 2224–2234 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Galun, E. et al. Clinical evaluation (phase I) of a human monoclonal antibody against hepatitis C virus: Safety and antiviral activity. J. Hepatol. 46, 37–44 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Law, M. et al. Broadly neutralizing antibodies protect against hepatitis C virus quasispecies challenge. Nat. Med. 14, 25–27 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Giang, E. et al. Human broadly neutralizing antibodies to the envelope glycoprotein complex of hepatitis C virus. Proc. Natl. Acad. Sci. USA 109, 6205–6210 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Barth, H. et al. Cellular binding of hepatitis C virus envelope glycoprotein e2 requires cell surface heparan sulfate. J. Biol. Chem. 278, 41003–41012 (2003).

    Article  PubMed  Google Scholar 

  47. Agnello, V., Abel, G., Elfahal, M., Knight, G.B. & Zhang, Q.X. Hepatitis C virus and other flaviviridae viruses enter cells via low density lipoprotein receptor. Proc. Natl. Acad. Sci. USA 96, 12766–12771 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Scarselli, E. et al. The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J. 21, 5017–5025 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pileri, P. et al. Binding of hepatitis C virus to CD81. Science 282, 938–941 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Evans, M.J. et al. Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 446, 801–805 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Ploss, A. et al. Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature 457, 882–886 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shulla, A. & Randall, G. Hepatitis C virus-host interactions, replication, and viral assembly. Curr. Opin. Virol. 2, 725–732 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Zheng, A. et al. Claudin-6 and claudin-9 function as additional coreceptors for hepatitis C virus. J. Virol. 81, 12465–12471 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lupberger, J. et al. EGFR and EPHA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nat. Med. 17, 589–595 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sainz, B. Jr. et al. Identification of the Niemann-Pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor. Nat. Med. 18, 281–285 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Blanchard, E. et al. Hepatitis C virus entry depends on clathrin-mediated endocytosis. J. Virol. 80, 6964–6972 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tscherne, D.M. et al. Time- and temperature-dependent activation of hepatitis C virus for low-pH-triggered entry. J. Virol. 80, 1734–1741 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Koutsoudakis, G. et al. Characterization of the early steps of hepatitis C virus infection by using luciferase reporter viruses. J. Virol. 80, 5308–5320 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sharma, N.R. et al. Hepatitis C virus is primed by CD81 protein for low pH-dependent fusion. J. Biol. Chem. 286, 30361–30376 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Krey, T. et al. The disulfide bonds in glycoprotein E2 of hepatitis C virus reveal the tertiary organization of the molecule. PLoS Pathog. 6, e1000762 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. El Omari, K., Iourin, O., Harlos, K., Grimes, J.M. & Stuart, D.I. Structure of a pestivirus envelope glycoprotein E2 clarifies its role in cell entry. Cell Rep. 3, 30–35 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li, Y., Wang, J., Kanai, R. & Modis, Y. Crystal structure of glycoprotein E2 from bovine viral diarrhea virus. Proc. Natl. Acad. Sci. USA 110, 6805–6810 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Timpe, J.M. et al. Hepatitis C virus cell-cell transmission in hepatoma cells in the presence of neutralizing antibodies. Hepatology 47, 17–24 (2008).

    Article  PubMed  Google Scholar 

  64. Meuleman, P. et al. Anti-cd81 antibodies can prevent a hepatitis C virus infection in vivo. Hepatology 48, 1761–1768 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Meuleman, P. et al. A human monoclonal antibody targeting scavenger receptor class B type I precludes hepatitis C virus infection and viral spread in vitro and in vivo. Hepatology 55, 364–372 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Lemon, S.M. et al. Development of novel therapies for hepatitis C. Antiviral Res. 86, 79–92 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Syder, A.J. et al. Small molecule scavenger receptor BI antagonists are potent HCV entry inhibitors. J. Hepatol. 54, 48–55 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Zhu, H. et al. Evaluation of ITC 5061, a scavenger receptor B1 antagonist: Resistance selection and activity in combination with other hepatitis C virus antivirals. J. Infect. Dis. 205, 656–662 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu, R. et al. A peptide derived from hepatitis C virus E2 envelope protein inhibits a post-binding step in HCV entry. Antiviral Res. 86, 172–179 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Vermehren, J. & Sarrazin, C. The role of resistance in HCV treatment. Best Pract. Res. Clin. Gastroenterol. 26, 487–503 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Clark, V.C., Peter, J.A. & Nelson, D.R. New therapeutic strategies in HCV: Second-generation protease inhibitors. Liver Int. 33 (suppl. 1), 80–84 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Lorenz, I.C., Marcotrigiano, J., Dentzer, T.G. & Rice, C.M. Structure of the catalytic domain of the hepatitis C virus NS2–3 protease. Nature 442, 831–835 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Jirasko, V. et al. Structural and functional studies of nonstructural protein 2 of the hepatitis C virus reveal its key role as organizer of virion assembly. PLoS Pathog. 6, e1001233 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Popescu, C.I. et al. Ns2 protein of hepatitis C virus interacts with structural and non-structural proteins towards virus assembly. PLoS Pathog. 7, e1001278 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Egger, D. et al. Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex. J. Virol. 76, 5974–5984 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Romero-Brey, I. et al. Three-dimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication. PLoS Pathog. 8, e1003056 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lesburg, C.A. et al. Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals a fully encircled active site. Nat. Struct. Biol. 6, 937–943 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Raney, K.D., Sharma, S.D., Moustafa, I.M. & Cameron, C.E. Hepatitis C virus non-structural protein 3 (HCV NS3): A multifunctional antiviral target. J. Biol. Chem. 285, 22725–22731 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tellinghuisen, T.L., Marcotrigiano, J., Gorbalenya, A.E. & Rice, C.M. The NS5A protein of hepatitis C virus is a zinc metalloprotein. J. Biol. Chem. 279, 48576–48587 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Tellinghuisen, T.L., Marcotrigiano, J. & Rice, C.M. Structure of the zinc-binding domain of an essential component of the hepatitis C virus replicase. Nature 435, 374–379 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Love, R.A., Brodsky, O., Hickey, M.J., Wells, P.A. & Cronin, C.N. Crystal structure of a novel dimeric form of NS5A domain I protein from hepatitis C virus. J. Virol. 83, 4395–4403 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tellinghuisen, T.L., Foss, K.L., Treadaway, J.C. & Rice, C.M. Identification of residues required for RNA replication in domains II and III of the hepatitis C virus NS5A protein. J. Virol. 82, 1073–1083 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Appel, N. et al. Essential role of domain III of nonstructural protein 5a for hepatitis C virus infectious particle assembly. PLoS Pathog. 4, e1000035 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tellinghuisen, T.L., Foss, K.L. & Treadaway, J. Regulation of hepatitis C virion production via phosphorylation of the NS5A protein. PLoS Pathog. 4, e1000032 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Neddermann, P. et al. Reduction of hepatitis C virus NS5A hyperphosphorylation by selective inhibition of cellular kinases activates viral RNA replication in cell culture. J. Virol. 78, 13306–13314 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lawitz, E. et al. Sofosbuvir for previously untreated chronic hepatitis C infection. N. Engl. J. Med. 368, 1878–1887 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Jacobson, I.M. et al. Sofosbuvir for hepatitis C genotype 2 or 3 in patients without treatment options. N. Engl. J. Med. 368, 1867–1877 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Arnold, J.J. et al. Sensitivity of mitochondrial transcription and resistance of RNA polymerase II dependent nuclear transcription to antiviral ribonucleosides. PLoS Pathog. 8, e1003030 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gao, M. et al. Chemical genetics strategy identifies an HCV NS5A inhibitor with a potent clinical effect. Nature 465, 96–100 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Scheel, T.K., Gottwein, J.M., Mikkelsen, L.S., Jensen, T.B. & Bukh, J. Recombinant HCV variants with NS5A from genotypes 1–7 have different sensitivities to an NS5A inhibitor but not interferon-α. Gastroenterology 140, 1032–1042 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Guedj, J. et al. Modeling shows that the NS5A inhibitor daclatasvir has two modes of action and yields a shorter estimate of the hepatitis C virus half-life. Proc. Natl. Acad. Sci. USA 110, 3991–3996 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Pol, S. et al. Daclatasvir for previously untreated chronic hepatitis C genotype-1 infection: A randomised, parallel-group, double-blind, placebo-controlled, dose-finding, phase 2a trial. Lancet Infect. Dis. 12, 671–677 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Sulkowski, M. et al. Sustained virologic response with daclatasvir plus sofosbuvir ± ribavirin (RBV) in chronic HCV genotype (GT) 1-infected patients who previously failed telaprevir (TVR) or boceprevir (BOC). J. Hepatol. 58, S570 (2013).

    Article  Google Scholar 

  94. Gu, M. & Rice, C.M. Three conformational snapshots of the hepatitis C virus ns3 helicase reveal a ratchet translocation mechanism. Proc. Natl. Acad. Sci. USA 107, 521–528 (2010).

    Article  PubMed  Google Scholar 

  95. Rai, R. & Deval, J. New opportunities in anti-hepatitis C virus drug discovery: Targeting ns4b. Antiviral Res. 90, 93–101 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Einav, S. et al. Discovery of a hepatitis C target and its pharmacological inhibitors by microfluidic affinity analysis. Nat. Biotechnol. 26, 1019–1027 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Esser-Nobis, K. et al. Analysis of hepatitis C virus resistance to silibinin in vitro and in vivo points to a novel mechanism involving nonstructural protein 4b. Hepatology 57, 953–963 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Watashi, K., Hijikata, M., Hosaka, M., Yamaji, M. & Shimotohno, K. Cyclosporin a suppresses replication of hepatitis C virus genome in cultured hepatocytes. Hepatology 38, 1282–1288 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Paeshuyse, J. et al. The non-immunosuppressive cyclosporin debio-025 is a potent inhibitor of hepatitis C virus replication in vitro. Hepatology 43, 761–770 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Hopkins, S. et al. Scy-635, a novel nonimmunosuppressive analog of cyclosporine that exhibits potent inhibition of hepatitis C virus RNA replication in vitro. Antimicrob. Agents Chemother. 54, 660–672 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Yang, F. et al. Cyclophilin A is an essential cofactor for hepatitis C virus infection and the principal mediator of cyclosporine resistance in vitro. J. Virol. 82, 5269–5278 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rosnoblet, C. et al. Hepatitis C virus NS5B and host cyclophilin a share a common binding site on NS5A. J. Biol. Chem. 287, 44249–44260 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hopkins, S. et al. The cyclophilin inhibitor scy-635 suppresses viral replication and induces endogenous interferons in patients with chronic HCV genotype 1 infection. J. Hepatol. 57, 47–54 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Flisiak, R. et al. The cyclophilin inhibitor debio 025 combined with peg IFN-α2a significantly reduces viral load in treatment-naive hepatitis C patients. Hepatology 49, 1460–1468 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Jopling, C.L., Yi, M., Lancaster, A.M., Lemon, S.M. & Sarnow, P. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 309, 1577–1581 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Machlin, E.S., Sarnow, P. & Sagan, S.M. Masking the 5′ terminal nucleotides of the hepatitis C virus genome by an unconventional microRNA-target RNA complex. Proc. Natl. Acad. Sci. USA 108, 3193–3198 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Jangra, R.K., Yi, M. & Lemon, S.M. Regulation of hepatitis C virus translation and infectious virus production by the microRNA miR-122. J. Virol. 84, 6615–6625 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Li, Y., Masaki, T., Yamane, D., McGivern, D.R. & Lemon, S.M. Competing and noncompeting activities of miR-122 and the 5′ exonuclease xrn1 in regulation of hepatitis C virus replication. Proc. Natl. Acad. Sci. USA 110, 1881–1886 (2013).

    Article  PubMed  Google Scholar 

  109. Shimakami, T. et al. Stabilization of hepatitis C virus RNA by an ago2-miR-122 complex. Proc. Natl. Acad. Sci. USA 109, 941–946 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Lanford, R.E. et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327, 198–201 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Li, Y.P., Gottwein, J.M., Scheel, T.K., Jensen, T.B. & Bukh, J. MicroRNA-122 antagonism against hepatitis C virus genotypes 1–6 and reduced efficacy by host RNA insertion or mutations in the HCV 5′ UTR. Proc. Natl. Acad. Sci. USA 108, 4991–4996 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Hsu, S.H. et al. Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J. Clin. Invest. 122, 2871–2883 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tsai, W.C. et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J. Clin. Invest. 122, 2884–2897 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Janssen, H.L. et al. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med. 368, 1685–1694 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Ye, J. et al. Disruption of hepatitis C virus RNA replication through inhibition of host protein geranylgeranylation. Proc. Natl. Acad. Sci. USA 100, 15865–15870 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kapadia, S.B. & Chisari, F.V. Hepatitis C virus RNA replication is regulated by host geranylgeranylation and fatty acids. Proc. Natl. Acad. Sci. USA 102, 2561–2566 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Harrison, S.A. et al. Serum cholesterol and statin use predict virological response to peginterferon and ribavirin therapy. Hepatology 52, 864–874 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Bishé, B., Syed, G. & Siddiqui, A. Phosphoinositides in the hepatitis C virus life cycle. Viruses 4, 2340–2358 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Berger, K.L. et al. Roles for endocytic trafficking and phosphatidylinositol 4-kinase III -α in hepatitis C virus replication. Proc. Natl. Acad. Sci. USA 106, 7577–7582 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Reiss, S. et al. Recruitment and activation of a lipid kinase by hepatitis C virus NS5A is essential for integrity of the membranous replication compartment. Cell Host Microbe 9, 32–45 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bianco, A. et al. Metabolism of phosphatidylinositol 4-kinase III-α-dependent PI4P is subverted by HCV and is targeted by a 4-anilino quinazoline with antiviral activity. PLoS Pathog. 8, e1002576 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Vaillancourt, F.H. et al. Evaluation of phosphatidylinositol-4-kinase III-α as a hepatitis C virus drug target. J. Virol. 86, 11595–11607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. McLauchlan, J., Lemberg, M.K., Hope, G. & Martoglio, B. Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets. EMBO J. 21, 3980–3988 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Boulant, S. et al. Structural determinants that target the hepatitis C virus core protein to lipid droplets. J. Biol. Chem. 281, 22236–22247 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Herker, E. et al. Efficient hepatitis C virus particle formation requires diacylglycerol acyltransferase-1. Nat. Med. 16, 1295–1298 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Miyanari, Y. et al. The lipid droplet is an important organelle for hepatitis C virus production. Nat. Cell Biol. 9, 1089–1097 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Shavinskaya, A., Boulant, S., Penin, F., McLauchlan, J. & Bartenschlager, R. The lipid droplet binding domain of hepatitis C virus core protein is a major determinant for efficient virus assembly. J. Biol. Chem. 282, 37158–37169 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Lavie, M., Goffard, A. & Dubuisson, J. Assembly of a functional HCV glycoprotein heterodimer. Curr. Issues Mol. Biol. 9, 71–86 (2007).

    CAS  PubMed  Google Scholar 

  129. Steinmann, E. et al. Antiviral effects of amantadine and iminosugar derivatives against hepatitis C virus. Hepatology 46, 330–338 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Griffin, S. et al. Genotype-dependent sensitivity of hepatitis C virus to inhibitors of the p7 ion channel. Hepatology 48, 1779–1790 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Durantel, D. Celgosivir, an α-glucosidase I inhibitor for the potential treatment of HCV infection. Curr. Opin. Investig. Drugs 10, 860–870 (2009).

    CAS  PubMed  Google Scholar 

  132. Wozniak, A.L. et al. Intracellular proton conductance of the hepatitis C virus p7 protein and its contribution to infectious virus production. PLoS Pathog. 6, e1001087 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Tanwandee, T. et al. High sustained viral response with a HCV p7 inhibitor, bit225: Antiviral activity and tolerability of bit225 plus pegylated interferon alfa 2b and weight-based ribavirin for 28 days in HCV treatment-naive patients. Hepatology 56, 1530 (2012).

    Google Scholar 

  134. Huang, H. et al. Hepatitis C virus production by human hepatocytes dependent on assembly and secretion of very low-density lipoproteins. Proc. Natl. Acad. Sci. USA 104, 5848–5853 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gastaminza, P. et al. Cellular determinants of hepatitis C virus assembly, maturation, degradation, and secretion. J. Virol. 82, 2120–2129 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Counihan, N.A., Rawlinson, S.M. & Lindenbach, B.D. Trafficking of hepatitis C virus core protein during virus particle assembly. PLoS Pathog. 7, e1002302 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Coller, K.E. et al. Molecular determinants and dynamics of hepatitis C virus secretion. PLoS Pathog. 8, e1002466 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Jiang, J. & Luo, G. Apolipoprotein E but not B is required for the formation of infectious hepatitis C virus particles. J. Virol. 83, 12680–12691 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hunt, D. & Pockros, P. What are the promising new therapies in the field of chronic hepatitis C after the first-generation direct-acting antivirals? Curr. Gastroenterol. Rep. 15, 303 (2013).

    Article  PubMed  Google Scholar 

  140. Jacobson, I. et al. Simeprevir (TMC435) with peginterferon/ribavirin for chronic HCV genotype-1 infection in treatment-naïve patients: Results from QUEST-1, a phase III trial. J. Hepatol. 58, S574 (2013).

    Article  Google Scholar 

  141. Manns, M. et al. Simeprevir (TMC435) with peginterferon/ribavirin for treatment of chronic HCV genotype-1 infection in treatment-naïve patients: Results from QUEST-2, a phase III trial. J. Hepatol. 58, S568 (2013).

    Article  Google Scholar 

  142. Ferenci, P. et al. Faldaprevir plus pegylated interferon alfa-2a and ribavirin in chronic HCV genotype-1 treatment-naïve patients: Final results from startverso1, a randomised, double-blind, placebo-controlled phase III trial. J. Hepatol. 58, S569 (2013).

    Article  Google Scholar 

  143. Lok, A.S. et al. Sustained virologic response in chronic HCV genotype (GT) 1-infected null responders with combination of daclatasvir (DCV; NS5A inhibitor) and asunaprevir (ASV; ns3 inhibitor) with or without peginterferon alfa-2a/ribavirin (PEG/RBV). Hepatology 56, 230A–231A (2012).

    Google Scholar 

  144. Thompson, A.J. et al. Six weeks of a NS5A inhibitor (GS-5885), protease inhibitor (GS-9451) plus peginterferon/ribavirin (PR) achieves high SVR4 rates in genotype 1 IL28B CC treatment naive HCV patients: Interim results of a prospective, randomized trial. Hepatology 56, 556A–557A (2012).

    Article  CAS  Google Scholar 

  145. Feld, J.J. et al. Up to 100% svr4 rates with ritonavir-boosted danoprevir (DNVR), mericitabine (MCB) and ribavirin (R) ± peginterferon alfa-2a (40kd) (P) in HCV genotype 1-infected partial and null responders: Results from the matterhorn study. Hepatology 56, 231A–232A (2012).

    Google Scholar 

  146. Muir, A.J. et al. Peginterferon lambda-1a (lambda) compared to peginterferon alfa-2a (alfa) in treatment-naive patients with HCV genotypes (GT) 1 or 4: Svr24 results from emerge phase 2b. Hepatology 56, 299A (2012).

    Google Scholar 

  147. Olsen, D.B. et al. Sustained viral response in a hepatitis C virus-infected chimpanzee via a combination of direct-acting antiviral agents. Antimicrob. Agents Chemother. 55, 937–939 (2011).

    Article  CAS  PubMed  Google Scholar 

  148. Ohara, E. et al. Elimination of hepatitis C virus by short term NS3–4A and NS5B inhibitor combination therapy in human hepatocyte chimeric mice. J. Hepatol. 54, 872–878 (2011).

    Article  CAS  PubMed  Google Scholar 

  149. Lok, A.S. et al. Preliminary study of two antiviral agents for hepatitis C genotype 1. N. Engl. J. Med. 366, 216–224 (2012).

    Article  CAS  PubMed  Google Scholar 

  150. Kowdley, K. et al. Safety and efficacy of interferon-free regimens of ABT-450/R, ABT-267, ABT-333 ± ribavirin in patients with chronic HCV gt1 infection: Results from the aviator study. J. Hepatol. 58, S2 (2013).

    Article  Google Scholar 

  151. Everson, G. et al. Interim analysis of an interferon (IFN)- and ribavirin (RBV)-free regimen of daclatasvir (DCV), asunaprevir (ASV), and BMS-791325 in treatment-naive, hepatitis C virus genotype 1–infected patients. J. Hepatol. 58, S573 (2013).

    Article  Google Scholar 

  152. Gane, E. et al. All-oral sofosbuvir-based 12-week regimens for the treatment of chronic HCV infection: The electron study. J. Hepatol. 58, S6–S7 (2013).

    Article  Google Scholar 

  153. Sulkowski, M. et al. High rate of sustained virologic response with the all-oral combination of daclatasvir (NS5A inhibitor) plus sofosbuvir (nucleotide NS5B inhibitor) with or without ribavirin, in treatment-naive patients chronically infected with HCV GT 1, 2, or 3. Hepatology 56, 1516–1517 (2012).

    Google Scholar 

  154. Poordad, F. et al. Exploratory study of oral combination antiviral therapy for hepatitis C. N. Engl. J. Med. 368, 45–53 (2013).

    Article  CAS  PubMed  Google Scholar 

  155. Jacobson, I.M. et al. VX-222, telaprevir and ribavirin in treatment-naive patients with genotype 1 chronic hepatitis C: Results of the zenith study interferon-free regimen. Hepatology 56, 308A (2012).

    Article  CAS  Google Scholar 

  156. Zeuzem, S. et al. An analysis of response rates by fibrosis stage in patients treated with faldaprevir, BI 207127 and ribavirin in the SOUND-C2 study. J. Hepatol. 58, S498 (2013).

    Article  Google Scholar 

  157. Gane, E.J. et al. Nucleotide polymerase inhibitor sofosbuvir plus ribavirin for hepatitis C. N. Engl. J. Med. 368, 34–44 (2013).

    Article  CAS  PubMed  Google Scholar 

  158. Zeuzem, S. et al. Interferon (IFN)-free combination treatment with the HCV NS3/4A protease inhibitor bi 201335 and the non-nucleoside NS5B inhibitor BI 207127 +/− ribavirin (R): Final results of sound-c2 and predictors of response. Hepatology 56, 308A–309A (2012).

    Google Scholar 

  159. Saeed, M. et al. Efficient replication of genotype 3a and 4a HCV replicons in human hepatoma cells. Antimicrob. Agents Chemother. 56, 5365–5373 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Li, Y.P. et al. Highly efficient full-length hepatitis C virus genotype 1 (strain TN) infectious culture system. Proc. Natl. Acad. Sci. USA 109, 19757–19762 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Li, Y.P. et al. Robust full-length hepatitis C virus genotype 2a and 2b infectious cultures using mutations identified by a systematic approach applicable to patient strains. Proc. Natl. Acad. Sci. USA 109, E1101–E1110 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  162. McPhee, F. et al. Resistance analysis of hepatitis C virus genotype 1 prior treatment null responders receiving daclatasvir and asunaprevir. Hepatology published online, http://dx.doi.org/10.1002/hep.26388 (2013).

  163. Pawlotsky, J.M. et al. Alisporivir plus ribavirin achieves high rates of sustained HCV clearance (SVR24) as interferon (IFN)-free or IFN-add-on regimen in treatment-naive patients with HCV GT2 or GT3: Final results from vital-1 study. Hepatology 56, 309A–310A (2012).

    Google Scholar 

  164. Marukian, S. et al. Hepatitis C virus induces interferon-λ and interferon-stimulated genes in primary liver cultures. Hepatology 54, 1913–1923 (2011).

    Article  CAS  PubMed  Google Scholar 

  165. Love, R.A. et al. The crystal structure of hepatitis C virus NS3 proteinase reveals a trypsin-like fold and a structural zinc binding site. Cell 87, 331–342 (1996).

    Article  CAS  PubMed  Google Scholar 

  166. Wölk, B. et al. Subcellular localization, stability, and trans-cleavage competence of the hepatitis C virus NS3-NS4A complex expressed in tetracycline-regulated cell lines. J. Virol. 74, 2293–2304 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Moradpour, D., Penin, F. & Rice, C.M. Replication of hepatitis C virus. Nat. Rev. Microbiol. 5, 453–463 (2007).

    Article  CAS  PubMed  Google Scholar 

  168. Kolykhalov, A.A. et al. Transmission of hepatitis C by intrahepatic inoculation with transcribed RNA. Science 277, 570–574 (1997).

    Article  CAS  PubMed  Google Scholar 

  169. Yanagi, M., Purcell, R.H., Emerson, S.U. & Bukh, J. Transcripts from a single full-length cDNA clone of hepatitis C virus are infectious when directly transfected into the liver of a chimpanzee. Proc. Natl. Acad. Sci. USA 94, 8738–8743 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Gottwein, J.M. et al. Novel infectious cDNA clones of hepatitis C virus genotype 3a (strain S52) and 4a (strain ED43): Genetic analyses and in vivo pathogenesis studies. J. Virol. 84, 5277–5293 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Bitzegeio, J. et al. Adaptation of hepatitis C virus to mouse CD81 permits infection of mouse cells in the absence of human entry factors. PLoS Pathog. 6, e1000978 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Blight, K.J., Kolykhalov, A.A. & Rice, C.M. Efficient initiation of HCV RNA replication in cell culture. Science 290, 1972–1974 (2000).

    Article  CAS  PubMed  Google Scholar 

  173. Bukh, J. et al. Mutations that permit efficient replication of hepatitis C virus RNA in Huh-7 cells prevent productive replication in chimpanzees. Proc. Natl. Acad. Sci. USA 99, 14416–14421 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Kaul, A., Woerz, I., Meuleman, P., Leroux-Roels, G. & Bartenschlager, R. Cell culture adaptation of hepatitis C virus and in vivo viability of an adapted variant. J. Virol. 81, 13168–13179 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Pietschmann, T. et al. Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras. Proc. Natl. Acad. Sci. USA 103, 7408–7413 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Imhof, I. & Simmonds, P. Development of an intergenotypic hepatitis C virus (HCV) cell culture method to assess antiviral susceptibilities and resistance development of HCV NS3 protease genes from HCV genotypes 1 to 6. J. Virol. 84, 4597–4610 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Gastaminza, P., Whitten-Bauer, C. & Chisari, F.V. Unbiased probing of the entire hepatitis C virus life cycle identifies clinical compounds that target multiple aspects of the infection. Proc. Natl. Acad. Sci. USA 107, 291–296 (2010).

    Article  PubMed  Google Scholar 

  178. Chockalingam, K., Simeon, R.L., Rice, C.M. & Chen, Z. A cell protection screen reveals potent inhibitors of multiple stages of the hepatitis C virus life cycle. Proc. Natl. Acad. Sci. USA 107, 3764–3769 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to I.M. Jacobson for critical reading of the manuscript. Our research is supported by grants from the US Public Health Service, the National Institutes of Health (NIH), National Institute of Allergy and Infectious Diseases (AI099284, AI072613, AI075099, AI091707, AI090055), Office of the Director through the NIH Roadmap for Medical Research (DK085713), US National Cancer Institute (CA057973), The Rockefeller University Center for Clinical and Translational Science (UL1RR024143), the Center for Basic and Translational Research on Disorders of the Digestive System through the generosity of the Leona M. and Harry B. Helmsley Charitable Trust, the Greenberg Medical Research Institute and the Starr Foundation. T.K.H.S. is supported by a postdoctoral fellowship and a Sapere Aude Research Talent Award from The Danish Council for Independent Research. We apologize to the many HCV investigators whose work could not be cited owing to space restrictions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles M Rice.

Ethics declarations

Competing interests

C.M.R. declares an equity interest in Apath, which holds commercial rights to HCV-related technology, and has in addition served as a consultant or scientific advisor to Genentech, GlaxoSmithKline, iTherX, Merck & Co. Inc. and Novartis. C.M.R. and T.K.H.S. both hold patent rights to HCV-related technology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheel, T., Rice, C. Understanding the hepatitis C virus life cycle paves the way for highly effective therapies. Nat Med 19, 837–849 (2013). https://doi.org/10.1038/nm.3248

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3248

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing