Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hepatitis B virus–induced lipid alterations contribute to natural killer T cell–dependent protective immunity

Abstract

In most adult humans, hepatitis B is a self-limiting disease leading to life-long protective immunity, which is the consequence of a robust adaptive immune response occurring weeks after hepatitis B virus (HBV) infection. Notably, HBV-specific T cells can be detected shortly after infection, but the mechanisms underlying this early immune priming and its consequences for subsequent control of viral replication are poorly understood. Using primary human and mouse hepatocytes and mouse models of transgenic and adenoviral HBV expression, we show that HBV-expressing hepatocytes produce endoplasmic reticulum (ER)-associated endogenous antigenic lipids including lysophospholipids that are generated by HBV-induced secretory phospholipases and that lead to activation of natural killer T (NKT) cells. The absence of NKT cells or CD1d or a defect in ER-associated transfer of lipids onto CD1d results in diminished HBV-specific T and B cell responses and delayed viral control in mice. NKT cells may therefore contribute to control of HBV infection through sensing of HBV-induced modified self-lipids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NKT cells become activated in response to Ad-HBV and contribute to adaptive immune responses.
Figure 2: NKT cells contribute to control of Ad-HBV and prevent chronic hepatitis.
Figure 3: NKT activation in response to HBV is mediated by hepatocytes and dependent on hepatocyte CD1d and MTP.
Figure 4: Microsomal lipids of Ad-HBV-infected hepatocytes contain NKT cell-activating lipid antigens.
Figure 5: HBV-mediated activation of noninvariant NKT cells is dependent on lysophospholipids and sPLA2.
Figure 6: Expression of HBsAg and cytokines contribute to NKT cell activation.

Similar content being viewed by others

References

  1. Thimme, R. et al. CD8+ T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. J. Virol. 77, 68–76 (2003).

    Article  CAS  Google Scholar 

  2. Yeo, W. et al. Hepatitis B virus reactivation in lymphoma patients with prior resolved hepatitis B undergoing anticancer therapy with or without rituximab. J. Clin. Oncol. 27, 605–611 (2009).

    Article  CAS  Google Scholar 

  3. Esteve, M. et al. Chronic hepatitis B reactivation following infliximab therapy in Crohn's disease patients: need for primary prophylaxis. Gut 53, 1363–1365 (2004).

    Article  CAS  Google Scholar 

  4. Calabrese, L.H., Zein, N.N. & Vassilopoulos, D. Hepatitis B virus (HBV) reactivation with immunosuppressive therapy in rheumatic diseases: assessment and preventive strategies. Ann. Rheum. Dis. 65, 983–989 (2006).

    Article  CAS  Google Scholar 

  5. Thio, C.L. et al. HIV-1, hepatitis B virus, and risk of liver-related mortality in the Multicenter Cohort Study (MACS). Lancet 360, 1921–1926 (2002).

    Article  Google Scholar 

  6. Guidotti, L.G. & Chisari, F.V. Immunobiology and pathogenesis of viral hepatitis. Annu. Rev. Pathol. 1, 23–61 (2006).

    Article  CAS  Google Scholar 

  7. Bendelac, A., Savage, P.B. & Teyton, L. The biology of NKT cells. Annu. Rev. Immunol. 25, 297–336 (2007).

    Article  CAS  Google Scholar 

  8. Tupin, E., Kinjo, Y. & Kronenberg, M. The unique role of natural killer T cells in the response to microorganisms. Nat. Rev. Microbiol. 5, 405–417 (2007).

    Article  CAS  Google Scholar 

  9. Wieland, S., Thimme, R., Purcell, R.H. & Chisari, F.V. Genomic analysis of the host response to hepatitis B virus infection. Proc. Natl. Acad. Sci. USA 101, 6669–6674 (2004).

    Article  CAS  Google Scholar 

  10. Fisicaro, P. et al. Early kinetics of innate and adaptive immune responses during hepatitis B virus infection. Gut 58, 974–982 (2009).

    Article  CAS  Google Scholar 

  11. Webster, G.J. et al. Incubation phase of acute hepatitis B in man: dynamic of cellular immune mechanisms. Hepatology 32, 1117–1124 (2000).

    Article  CAS  Google Scholar 

  12. Guy, C.S., Mulrooney-Cousins, P.M., Churchill, N.D. & Michalak, T.I. Intrahepatic expression of genes affiliated with innate and adaptive immune responses immediately after invasion and during acute infection with woodchuck hepadnavirus. J. Virol. 82, 8579–8591 (2008).

    Article  CAS  Google Scholar 

  13. Kakimi, K., Guidotti, L.G., Koezuka, Y. & Chisari, F.V. Natural killer T cell activation inhibits hepatitis B virus replication in vivo. J. Exp. Med. 192, 921–930 (2000).

    Article  CAS  Google Scholar 

  14. Isogawa, M., Kakimi, K., Kamamoto, H., Protzer, U. & Chisari, F.V. Differential dynamics of the peripheral and intrahepatic cytotoxic T lymphocyte response to hepatitis B surface antigen. Virology 333, 293–300 (2005).

    Article  CAS  Google Scholar 

  15. Sprinzl, M.F., Oberwinkler, H., Schaller, H. & Protzer, U. Transfer of hepatitis B virus genome by adenovirus vectors into cultured cells and mice: crossing the species barrier. J. Virol. 75, 5108–5118 (2001).

    Article  CAS  Google Scholar 

  16. von Freyend, M.J. et al. Sequential control of hepatitis B virus in a mouse model of acute, self-resolving hepatitis B. J. Viral Hepat. 18, 216–226 (2011).

    Article  Google Scholar 

  17. Guidotti, L.G. et al. Viral clearance without destruction of infected cells during acute HBV infection. Science 284, 825–829 (1999).

    Article  CAS  Google Scholar 

  18. Publicover, J. et al. IL-21 is pivotal in determining age-dependent effectiveness of immune responses in a mouse model of human hepatitis B. J. Clin. Invest. 121, 1154–1162 (2011).

    Article  CAS  Google Scholar 

  19. Baron, J.L. et al. Activation of a nonclassical NKT cell subset in a transgenic mouse model of hepatitis B virus infection. Immunity 16, 583–594 (2002).

    Article  CAS  Google Scholar 

  20. Vilarinho, S., Ogasawara, K., Nishimura, S., Lanier, L.L. & Baron, J.L. Blockade of NKG2D on NKT cells prevents hepatitis and the acute immune response to hepatitis B virus. Proc. Natl. Acad. Sci. USA 104, 18187–18192 (2007).

    Article  CAS  Google Scholar 

  21. Brozovic, S. et al. CD1d function is regulated by microsomal triglyceride transfer protein. Nat. Med. 10, 535–539 (2004).

    Article  CAS  Google Scholar 

  22. Dougan, S.K., Rava, P., Hussain, M.M. & Blumberg, R.S. MTP regulated by an alternate promoter is essential for NKT cell development. J. Exp. Med. 204, 533–545 (2007).

    Article  CAS  Google Scholar 

  23. Dougan, S.K. et al. Microsomal triglyceride transfer protein lipidation and control of CD1d on antigen-presenting cells. J. Exp. Med. 202, 529–539 (2005).

    Article  CAS  Google Scholar 

  24. Kaser, A. et al. Microsomal triglyceride transfer protein regulates endogenous and exogenous antigen presentation by group 1 CD1 molecules. Eur. J. Immunol. 38, 2351–2359 (2008).

    Article  CAS  Google Scholar 

  25. Zeissig, S. et al. Primary deficiency of microsomal triglyceride transfer protein in human abetalipoproteinemia is associated with loss of CD1 function. J. Clin. Invest. 120, 2889–2899 (2010).

    Article  CAS  Google Scholar 

  26. Khatun, I. et al. Phospholipid transfer activity of microsomal triglyceride transfer protein produces apolipoprotein B and reduces hepatosteatosis while maintaining low plasma lipids in mice. Hepatology 55, 1356–1368 (2012).

    Article  CAS  Google Scholar 

  27. Ganem, D. & Prince, A.M. Hepatitis B virus infection—natural history and clinical consequences. N. Engl. J. Med. 350, 1118–1129 (2004).

    Article  CAS  Google Scholar 

  28. Patient, R., Hourioux, C. & Roingeard, P. Morphogenesis of hepatitis B virus and its subviral envelope particles. Cell. Microbiol. 11, 1561–1570 (2009).

    Article  CAS  Google Scholar 

  29. Satoh, O., Umeda, M., Imai, H., Tunoo, H. & Inoue, K. Lipid composition of hepatitis B virus surface antigen particles and the particle-producing human hepatoma cell lines. J. Lipid Res. 31, 1293–1300 (1990).

    CAS  Google Scholar 

  30. Arrenberg, P., Halder, R., Dai, Y., Maricic, I. & Kumar, V. Oligoclonality and innate-like features in the TCR repertoire of type II NKT cells reactive to a beta-linked self-glycolipid. Proc. Natl. Acad. Sci. USA 107, 10984–10989 (2010).

    Article  CAS  Google Scholar 

  31. Gumperz, J.E. et al. Murine CD1d-restricted T cell recognition of cellular lipids. Immunity 12, 211–221 (2000).

    Article  CAS  Google Scholar 

  32. Cox, D. et al. Determination of cellular lipids bound to human CD1d molecules. PLoS ONE 4, e5325 (2009).

    Article  Google Scholar 

  33. Fox, L.M. et al. Recognition of lyso-phospholipids by human natural killer T lymphocytes. PLoS Biol. 7, e1000228 (2009).

    Article  Google Scholar 

  34. Ni, Z., Okeley, N.M., Smart, B.P. & Gelb, M.H. Intracellular actions of group IIA secreted phospholipase A2 and group IVA cytosolic phospholipase A2 contribute to arachidonic acid release and prostaglandin production in rat gastric mucosal cells and transfected human embryonic kidney cells. J. Biol. Chem. 281, 16245–16255 (2006).

    Article  CAS  Google Scholar 

  35. Ito, M. et al. Distribution of type V secretory phospholipase A2 expression in human hepatocytes damaged by liver disease. J. Gastroenterol. Hepatol. 19, 1140–1149 (2004).

    Article  CAS  Google Scholar 

  36. Masuda, S., Murakami, M., Ishikawa, Y., Ishii, T. & Kudo, I. Diverse cellular localizations of secretory phospholipase A2 enzymes in several human tissues. Biochim. Biophys. Acta 1736, 200–210 (2005).

    Article  CAS  Google Scholar 

  37. Kuwata, H., Yamamoto, S., Takekura, A., Murakami, M. & Kudo, I. Group IIA secretory phospholipase A2 is a unique 12/15-lipoxygenase–regulated gene in cytokine-stimulated rat fibroblastic 3Y1 cells. Biochim. Biophys. Acta 1686, 15–23 (2004).

    Article  CAS  Google Scholar 

  38. Tischfield, J.A. et al. Low-molecular-weight, calcium-dependent phospholipase A2 genes are linked and map to homologous chromosome regions in mouse and human. Genomics 32, 328–333 (1996).

    Article  CAS  Google Scholar 

  39. Brigl, M., Bry, L., Kent, S.C., Gumperz, J.E. & Brenner, M.B. Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat. Immunol. 4, 1230–1237 (2003).

    Article  CAS  Google Scholar 

  40. Brigl, M. et al. Innate and cytokine-driven signals, rather than microbial antigens, dominate in natural killer T cell activation during microbial infection. J. Exp. Med. 208, 1163–1177 (2011).

    Article  CAS  Google Scholar 

  41. Nagarajan, N.A. & Kronenberg, M. Invariant NKT cells amplify the innate immune response to lipopolysaccharide. J. Immunol. 178, 2706–2713 (2007).

    Article  CAS  Google Scholar 

  42. Fujii, S., Liu, K., Smith, C., Bonito, A.J. & Steinman, R.M. The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation. J. Exp. Med. 199, 1607–1618 (2004).

    Article  CAS  Google Scholar 

  43. Fujii, S., Shimizu, K., Smith, C., Bonifaz, L. & Steinman, R.M. Activation of natural killer T cells by α-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J. Exp. Med. 198, 267–279 (2003).

    Article  CAS  Google Scholar 

  44. Ishak, K. et al. Histological grading and staging of chronic hepatitis. J. Hepatol. 22, 696–699 (1995).

    Article  CAS  Google Scholar 

  45. Smiley, S.T., Kaplan, M.H. & Grusby, M.J. Immunoglobulin E production in the absence of interleukin-4–secreting CD1-dependent cells. Science 275, 977–979 (1997).

    Article  CAS  Google Scholar 

  46. Cui, J. et al. Requirement for Vα14 NKT cells in IL-12–mediated rejection of tumors. Science 278, 1623–1626 (1997).

    Article  CAS  Google Scholar 

  47. Van Kaer, L., Ashton-Rickardt, P.G., Ploegh, H.L. & Tonegawa, S. TAP1 mutant mice are deficient in antigen presentation, surface class I molecules, and CD4–8+ T cells. Cell 71, 1205–1214 (1992).

    Article  CAS  Google Scholar 

  48. Postic, C. et al. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell–specific gene knock-outs using Cre recombinase. J. Biol. Chem. 274, 305–315 (1999).

    Article  CAS  Google Scholar 

  49. Raabe, M. et al. Analysis of the role of microsomal triglyceride transfer protein in the liver of tissue-specific knockout mice. J. Clin. Invest. 103, 1287–1298 (1999).

    Article  CAS  Google Scholar 

  50. Mohrs, M., Shinkai, K., Mohrs, K. & Locksley, R.M. Analysis of type 2 immunity in vivo with a bicistronic IL-4 reporter. Immunity 15, 303–311 (2001).

    Article  CAS  Google Scholar 

  51. Stetson, D.B. et al. Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function. J. Exp. Med. 198, 1069–1076 (2003).

    Article  CAS  Google Scholar 

  52. Chisari, F.V. et al. Structural and pathological effects of synthesis of hepatitis B virus large envelope polypeptide in transgenic mice. Proc. Natl. Acad. Sci. USA 84, 6909–6913 (1987).

    Article  CAS  Google Scholar 

  53. Scapa, E.F. et al. Regulation of energy substrate utilization and hepatic insulin sensitivity by phosphatidylcholine transfer protein/StarD2. FASEB J. 22, 2579–2590 (2008).

    Article  CAS  Google Scholar 

  54. Ernster, L., Siekevitz, P. & Palade, G.E. Enzyme-structure relationships in the endoplasmic reticulum of rat liver: a morphological and biochemical study. J. Cell Biol. 15, 541–562 (1962).

    Article  CAS  Google Scholar 

  55. Folch, J., Lees, M. & Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509 (1957).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health (NIH) grants DK51362, DK44319, DK53056, DK88199, the Harvard Digestive Diseases Center DK034854 (to R.S.B.); the Deutsche Forschungsgemeinschaft (Ze 814/1-1, Ze 814/4-1), a Marie Curie International Reintegration Grant within the 7th European Community Framework Programme (256363) and the Crohn's and Colitis Foundation of America (to S.Z.); the Crohn's and Colitis Foundation of America, Austrian Science Fund, and Max Kade Foundation (to A.K.); NIH AR048632, AI049313 and the Burroughs Wellcome Fund for Translational Research (to D.B.M.); DK46900 (to M.M.H.); the NIH Intramural Research Program (K.M., Z.H. and T.J.L.); NIH grants AI068090, DK026743 and the Burroughs Wellcome Fund (to J.L.B.); and the A.P. Gianinni Foundation (to J.P.). We thank D.E. Cohen, E. Scapa and S.K. Dougan for insightful discussions.

Author information

Authors and Affiliations

Authors

Contributions

S.Z. designed, performed and analyzed experiments and prepared the manuscript with R.S.B. and T.J.L.; K.M. and Z.H. generated adenoviruses and adenoviral mutants and contributed to Ad-HBV studies; L.S. and D.B.M. designed, performed and analyzed LC-MS experiments together with S.Z.; J.P. and J.L.B. designed, performed and analyzed studies with HBV-Env mice; A.K. generated H-Mttp−/− mice and contributed to their characterization; K.B. and C.R. performed histopathological analyses; M.M.H. and J.I. obtained purified MTP; E.B. performed PLA2 inhibitor and siRNA studies; R.G. obtained primary HBV isolates; A.A. and J.H. contributed to human hepatocyte studies; S.S. contributed to supervision of the studies; T.J.L. and R.S.B. supervised the studies.

Corresponding authors

Correspondence to T Jake Liang or Richard S Blumberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Data, Supplementary Methods, Supplementary Figures 1–19 and Supplementary Table 1 (PDF 2946 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeissig, S., Murata, K., Sweet, L. et al. Hepatitis B virus–induced lipid alterations contribute to natural killer T cell–dependent protective immunity. Nat Med 18, 1060–1068 (2012). https://doi.org/10.1038/nm.2811

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2811

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing