Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stem cell gene expression programs influence clinical outcome in human leukemia

Abstract

Xenograft studies indicate that some solid tumors and leukemias are organized as cellular hierarchies sustained by cancer stem cells (CSCs). Despite the promise of the CSC model, its relevance in humans remains uncertain. Here we show that acute myeloid leukemia (AML) follows a CSC model on the basis of sorting multiple populations from each of 16 primary human AML samples and identifying which contain leukemia stem cells (LSCs) using a sensitive xenograft assay. Analysis of gene expression from all functionally validated populations yielded an LSC-specific signature. Similarly, a hematopoietic stem cell (HSC) gene signature was established. Bioinformatic analysis identified a core transcriptional program shared by LSCs and HSCs, revealing the molecular machinery underlying 'stemness' properties. Both stem cell programs were highly significant independent predictors of patient survival and were found in existing prognostic signatures. Thus, determinants of stemness influence the clinical outcome of AML, establishing that LSCs are clinically relevant and not artifacts of xenotransplantation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategy of transcriptional profiling of stem cell fractions identified by function.
Figure 2: Correlation between LSC-R and HSC-R.
Figure 3: LSC-R and HSC-R gene signatures are correlated with disease outcome.
Figure 4: Correlation of LSC and HSC gene expression signatures and molecular risk status with overall survival in a cohort of cytogenetically normal AML samples.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Dick, J.E. Stem cell concepts renew cancer research. Blood 112, 4793–4807 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Diehn, M. et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458, 780–783 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li, X. et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J. Natl. Cancer Inst. 100, 672–679 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Ishikawa, F. et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat. Biotechnol. 25, 1315–1321 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Dylla, S.J. et al. Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS ONE 3, e2428 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Guzman, M.L. et al. Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 98, 2301–2307 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Kelly, P.N., Dakic, A., Adams, J.M., Nutt, S.L. & Strasser, A. Tumor growth need not be driven by rare cancer stem cells. Science 317, 337 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Taussig, D.C. et al. Anti-CD38 antibody-mediated clearance of human repopulating cells masks the heterogeneity of leukemia-initiating cells. Blood 112, 568–575 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Taussig, D.C. et al. Leukemia-initiating cells from some acute myeloid leukemia patients with mutated nucleophosmin reside in the CD34(−) fraction. Blood 115, 1976–1984 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Quintana, E. et al. Efficient tumour formation by single human melanoma cells. Nature 456, 593–598 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lapidot, T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645–648 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Bonnet, D. & Dick, J.E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3, 730–737 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Pearce, D.J. et al. AML engraftment in the NOD/SCID assay reflects the outcome of AML: implications for our understanding of the heterogeneity of AML. Blood 107, 1166–1173 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. van Rhenen, A. et al. High stem cell frequency in acute myeloid leukemia at diagnosis predicts high minimal residual disease and poor survival. Clin. Cancer Res. 11, 6520–6527 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. McKenzie, J.L., Gan, O.I., Doedens, M. & Dick, J.E. Human short-term repopulating stem cells are efficiently detected following intrafemoral transplantation into NOD/SCID recipients depleted of CD122+ cells. Blood 106, 1259–1261 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. McDermott, S.P., Eppert, K., Lechman, E., Doedens, M. & Dick, J.E. Comparison of human cord blood engraftment between immunocompromised mouse strains. Blood 116, 193–200 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Blair, A., Hogge, D.E., Ailles, L.E., Lansdorp, P.M. & Sutherland, H.J. Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood 89, 3104–3112 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Terpstra, W. et al. Fluoroucil selectively spares acute myeloid leukemia cells with long-term growth abilities in immunodeficient mice and in culture. Blood 88, 1944–1950 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Sarry, J.E. et al. Human acute myelogenous leukemia stem cells are rare and heterogeneous when assayed in NOD/SCID/IL2Rgammac-deficient mice. J. Clin. Invest. 121, 384–395 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Novershtern, N. et al. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 144, 296–309 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Georgantas, R.W. III et al. Microarray and serial analysis of gene expression analyses identify known and novel transcripts overexpressed in hematopoietic stem cells. Cancer Res. 64, 4434–4441 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Shojaei, F. et al. Hierarchical and ontogenic positions serve to define the molecular basis of human hematopoietic stem cell behavior. Dev. Cell 8, 651–663 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Wagner, W. et al. Molecular evidence for stem cell function of the slow-dividing fraction among human hematopoietic progenitor cells by genome-wide analysis. Blood 104, 675–686 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Ivanova, N.B. et al. A stem cell molecular signature. Science 298, 601–604 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Notta, F. et al. Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science 333, 218–221 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Mazurier, F., Doedens, M., Gan, O.I. & Dick, J.E. Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells. Nat. Med. 9, 959–963 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Brown, K.R. & Jurisica, I. Online predicted human interaction database. Bioinformatics 21, 2076–2082 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Brown, K.R. et al. NAViGaTOR: Network Analysis, Visualization and Graphing Toronto. Bioinformatics 25, 3327–3329 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Oh, I.H. & Eaves, C.J. Overexpression of a dominant negative form of STAT3 selectively impairs hematopoietic stem cell activity. Oncogene 21, 4778–4787 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Varnum-Finney, B. et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat. Med. 6, 1278–1281 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Karanu, F.N. et al. The notch ligand jagged-1 represents a novel growth factor of human hematopoietic stem cells. J. Exp. Med. 192, 1365–1372 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Somervaille, T.C. et al. Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells. Cell Stem Cell 4, 129–140 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Valk, P.J. et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N. Engl. J. Med. 350, 1617–1628 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Verhaak, R.G. et al. Prediction of molecular subtypes in acute myeloid leukemia based on gene expression profiling. Haematologica 94, 131–134 (2009).

    Article  PubMed  Google Scholar 

  36. Metzeler, K.H. et al. An 86-probe-set gene-expression signature predicts survival in cytogenetically normal acute myeloid leukemia. Blood 112, 4193–4201 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schlenk, R.F. et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N. Engl. J. Med. 358, 1909–1918 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Mrózek, K., Marcucci, G., Paschka, P., Whitman, S.P. & Bloomfield, C.D. Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognostically prioritized molecular classification? Blood 109, 431–448 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Döhner, K. et al. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood 106, 3740–3746 (2005).

    Article  PubMed  CAS  Google Scholar 

  40. Schnittger, S. et al. Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood 106, 3733–3739 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Thiede, C. et al. Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood 107, 4011–4020 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Marcucci, G. et al. Prognostic significance of, and gene and microRNA expression signatures associated with, CEBPA mutations in cytogenetically normal acute myeloid leukemia with high-risk molecular features: a Cancer and Leukemia Group B Study. J. Clin. Oncol. 26, 5078–5087 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bullinger, L. et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N. Engl. J. Med. 350, 1605–1616 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Radmacher, M.D. et al. Independent confirmation of a prognostic gene-expression signature in adult acute myeloid leukemia with a normal karyotype: a Cancer and Leukemia Group B study. Blood 108, 1677–1683 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ben-Porath, I. et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat. Genet. 40, 499–507 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hassan, K.A., Chen, G., Kalemkerian, G.P., Wicha, M.S. & Beer, D.G. An embryonic stem cell-like signature identifies poorly differentiated lung adenocarcinoma but not squamous cell carcinoma. Clin. Cancer Res. 15, 6386–6390 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wong, D.J. et al. Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell 2, 333–344 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gal, H. et al. Gene expression profiles of AML derived stem cells; similarity to hematopoietic stem cells. Leukemia 20, 2147–2154 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Gentles, A.J., Plevritis, S.K., Majeti, R. & Alizadeh, A.A. Association of a leukemic stem cell gene expression signature with clinical outcomes in acute myeloid leukemia. J. Am. Med. Assoc. 304, 2706–2715 (2010).

    Article  CAS  Google Scholar 

  50. Guzman, M.L. et al. Expression of tumor-suppressor genes interferon regulatory factor 1 and death-associated protein kinase in primitive acute myelogenous leukemia cells. Blood 97, 2177–2179 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Saito, Y. et al. Identification of therapeutic targets for quiescent, chemotherapy-resistant human leukemia stem cells. Sci. Transl. Med. 2, 17ra9 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Majeti, R. et al. Dysregulated gene expression networks in human acute myelogenous leukemia stem cells. Proc. Natl. Acad. Sci. USA 106, 3396–3401 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rosen, J.M. & Jordan, C.T. The increasing complexity of the cancer stem cell paradigm. Science 324, 1670–1673 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Adams, J.M. & Strasser, A. Is tumor growth sustained by rare cancer stem cells or dominant clones? Cancer Res. 68, 4018–4021 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Goyama, S. et al. Evi-1 is a critical regulator for hematopoietic stem cells and transformed leukemic cells. Cell Stem Cell 3, 207–220 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Simsek, T. et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 7, 380–390 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Björnsson, J.M. et al. Reduced proliferative capacity of hematopoietic stem cells deficient in Hoxb3 and Hoxb4. Mol. Cell. Biol. 23, 3872–3883 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Loughran, S.J. et al. The transcription factor Erg is essential for definitive hematopoiesis and the function of adult hematopoietic stem cells. Nat. Immunol. 9, 810–819 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Barjesteh van Waalwijk van Doorn-Khosrovani, S. et al. High EVI1 expression predicts poor survival in acute myeloid leukemia: a study of 319 de novo AML patients. Blood 101, 837–845 (2003).

    Article  PubMed  CAS  Google Scholar 

  60. Wang, J.C. Good cells gone bad: the cellular origins of cancer. Trends Mol. Med. 16, 145–151 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Tenen, D.G. Disruption of differentiation in human cancer: AML shows the way. Nat. Rev. Cancer 3, 89–101 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Smyth, G.K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, Article3 (2004).

    Article  Google Scholar 

  63. Hu, Y. & Smyth, G.K. ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J. Immunol. Methods 347, 70–78 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was in part supported by grants from the German Ministry of Education and Research (BMBF; C.B. and S.K.B., 01GS0448 and 01GS0876); the Deutsche Forschungsgemeinschaft (C.B., BU-1177/3-1); Ontario Research Fund (I.J., GL2-01-030); a fellowship (K.E.) and grants (J.E.D.) from the Leukemia and Lymphoma Society; the Stem Cell Network of Canadian National Centres of Excellence (J.E.D.); the Canadian Cancer Society Research Institute (J.E.D.); Ministry of Education, Culture, Sports, Science and Technology in Japan (20591134, K.T.); the Terry Fox Foundation (J.E.D.); Genome Canada through the Ontario Genomics Institute (J.E.D.); Ontario Institute for Cancer Research with funds from the province of Ontario (J.E.D.); the Canadian Institutes for Health Research (J.E.D.); and a Canada Research Chair (J.E.D. and I.J.). Computational resources were supported in part by Canada Foundation for Innovation (12301 and 203383) and IBM (I.J.). This research was funded in part by the Ontario Ministry of Health and Long-Term Care (OMOHLTC). The views expressed do not necessarily reflect those of OMOHLTC.

Author information

Authors and Affiliations

Authors

Contributions

K.E., E.R.L., K.T., B.L.E. and J.E.D. designed the study. K.E., E.R.L., P.v.G., K.T. and A.P. carried out experiments. K.E., K.T., L.W., B.N., E.R.L., P.v.G., V.L. and I.J. analyzed and interpreted data. K.E., J.B., A.J.C., J.S.D., S.K.B., K.H.M., C.B., M.D.M., T.R.G., I.J., B.L.E. and J.E.D. provided research support and conceptual advice. M.D.M. provided samples. K.E. and J.E.D. wrote the paper. E.R.L., K.T., K.H.M., J.S.D., S.K.B., C.B., M.D.M., I.J. and B.L.E. revised the paper.

Corresponding author

Correspondence to John E Dick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–14, Supplementary Results and Supplementary Methods (PDF 4025 kb)

Supplementary Tables

Supplementary Tables 1–25 (XLS 2492 kb)

Supplementary Data

NAViGaTOR file (XML 6223 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eppert, K., Takenaka, K., Lechman, E. et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med 17, 1086–1093 (2011). https://doi.org/10.1038/nm.2415

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2415

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer