Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Oncogenic PIK3CA-driven mammary tumors frequently recur via PI3K pathway–dependent and PI3K pathway–independent mechanisms

Abstract

PIK3CA gain-of-function mutations are a common oncogenic event in human malignancy1,2,3,4, making phosphatidylinositol 3-kinase (PI3K) a target for cancer therapy. Despite the promise of targeted therapy, resistance often develops, leading to treatment failure. To elucidate mechanisms of resistance to PI3K-targeted therapy, we constructed a mouse model of breast cancer conditionally expressing human PIK3CAH1047R. Notably, most PIK3CAH1047R-driven mammary tumors recurred after PIK3CAH1047R inactivation. Genomic analyses of recurrent tumors revealed multiple lesions, including focal amplification of Met or Myc (also known as c-Met and c-Myc, respectively). Whereas Met amplification led to tumor survival dependent on activation of endogenous PI3K, tumors with Myc amplification became independent of the PI3K pathway. Functional analyses showed that Myc contributed to oncogene independence and resistance to PI3K inhibition. Notably, PIK3CA mutations and c-MYC elevation co-occur in a substantial fraction of human breast tumors. Together, these data suggest that c-MYC elevation represents a potential mechanism by which tumors develop resistance to current PI3K-targeted therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mammary gland–specific expression of PIK3CAH1047R induces mammary tumors.
Figure 2: Tumor responses to doxycycline withdrawal.
Figure 3: Genetic alterations associated with PIK3CAH1047R-independent tumor recurrence.
Figure 4: Elevation of c-Myc drives mammary tumors to become independent of PIK3CAH1047R and resistant to PI3K inhibition.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Samuels, Y. et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 304, 554 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Liu, P., Cheng, H., Roberts, T.M. & Zhao, J.J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov. 8, 627–644 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vogt, P.K., Kang, S., Elsliger, M.A. & Gymnopoulos, M. Cancer-specific mutations in phosphatidylinositol 3-kinase. Trends Biochem. Sci. 32, 342–349 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Yuan, T.L. & Cantley, L.C. PI3K pathway alterations in cancer: variations on a theme. Oncogene 27, 5497–5510 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhao, J.J. et al. The oncogenic properties of mutant p110α and p110β phosphatidylinositol 3-kinases in human mammary epithelial cells. Proc. Natl. Acad. Sci. USA 102, 18443–18448 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kang, S., Bader, A.G. & Vogt, P.K. Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proc. Natl. Acad. Sci. USA 102, 802–807 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Isakoff, S.J. et al. Breast cancer-associated PIK3CA mutations are oncogenic in mammary epithelial cells. Cancer Res. 65, 10992–11000 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Samuels, Y. et al. Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell 7, 561–573 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Engelman, J.A. et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat. Med. 14, 1351–1356 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gunther, E.J. et al. A novel doxycycline-inducible system for the transgenic analysis of mammary gland biology. FASEB J. 16, 283–292 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Raynaud, F.I. et al. Biological properties of potent inhibitors of class I phosphatidylinositide 3-kinases: from PI-103 through PI-540, PI-620 to the oral agent GDC-0941. Mol. Cancer Ther. 8, 1725–1738 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. O'Brien, C. et al. Predictive biomarkers of sensitivity to the phosphatidylinositol 3′ kinase inhibitor GDC-0941 in breast cancer preclinical models. Clin. Cancer Res. 16, 3670–3683 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Engelman, J.A. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039–1043 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Turke, A.B. et al. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell 17, 77–88 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zou, H.Y. et al. An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res. 67, 4408–4417 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Sears, R. et al. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 14, 2501–2514 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yeh, E. et al. A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat. Cell Biol. 6, 308–318 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Cizkova, M. et al. Gene expression profiling reveals new aspects of PIK3CA mutation in ERα-positive breast cancer: major implication of the Wnt signaling pathway. PLoS ONE 5, e15647 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kan, Z. et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 466, 869–873 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Haverty, P.M. et al. High-resolution genomic and expression analyses of copy number alterations in breast tumors. Genes Chromosom. Cancer 47, 530–542 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Saal, L.H. et al. Poor prognosis in carcinoma is associated with a gene expression signature of aberrant PTEN tumor suppressor pathway activity. Proc. Natl. Acad. Sci. USA 104, 7564–7569 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stemke-Hale, K. et al. An integrative genomic and proteomic analysis of PIK3CA, PTEN and AKT mutations in breast cancer. Cancer Res. 68, 6084–6091 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tibes, R. et al. Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol. Cancer Ther. 5, 2512–2521 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Zhao, X. et al. An integrated view of copy number and allelic alterations in the cancer genome using single nucleotide polymorphism arrays. Cancer Res. 64, 3060–3071 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Moody, S.E. et al. Conditional activation of Neu in the mammary epithelium of transgenic mice results in reversible pulmonary metastasis. Cancer Cell 2, 451–461 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Moffat, J. et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124, 1283–1298 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Moody, S.E. et al. The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell 8, 197–209 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Tomayko, M.M. & Reynolds, C.P. Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother. Pharmacol. 24, 148–154 (1989).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Roberts, L. Cantley and W. Sellers for scientific discussions and suggestions. We thank L. Clayton and D. Silver for critical review of this manuscript. We thank R. Bronson for pathological analyses of tumor samples. We thank C. Li and E. Allgood for technical assistance. We thank L. Chodosh (University of Pennsylvania School of Medicine) for providing MMTV-rtTA mice. This work was supported by US National Institutes of Health grants CA134502 (J.J.Z.), CA148164-01 (J.J.Z. and N.S.G.) and K08CA122833 (R.B.), Stand Up To Cancer (J.J.Z. and G.B.M.), Dana Farber Harvard Cancer Center breast cancer SPORE grant P50 CA089393-08S1 (J.J.Z.), the US Department of Defense (BC051565 to J.J.Z.), the V Foundation (J.J.Z. and R.B.) and the Claudia Barr Program (J.J.Z.). In compliance with Harvard Medical School guidelines, we disclose that J.J.Z. and R.B. are consultants for Novartis Pharmaceuticals.

Author information

Authors and Affiliations

Authors

Contributions

P.L., H.C. and J.J.Z. designed the experiments, interpreted the data and wrote the paper. P.L. and H.C. carried out most of the experiments. S.S., A.I. and D.J.S. assisted with biochemical analyses and mouse work. J.Y., C.C., E.A.F., J.M. and R.S. carried out genome-wide DNA copy number profiling. N.S.G. provided GDC-0941 inhibitor. M.R. and R.B. analyzed co-occurrence of PIK3CA mutation with c-MYC amplification and overexpression in human breast tumors. F.Z. and G.B.M. provided the reverse-phase protein array data on the co-occurrence of PIK3CA mutation with increased c-MYC expression in human breast tumors.

Corresponding author

Correspondence to Jean J Zhao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–16, Supplementary Tables 1–3 and Supplementary Methods (PDF 2601 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, P., Cheng, H., Santiago, S. et al. Oncogenic PIK3CA-driven mammary tumors frequently recur via PI3K pathway–dependent and PI3K pathway–independent mechanisms. Nat Med 17, 1116–1120 (2011). https://doi.org/10.1038/nm.2402

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2402

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer