Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SOCS3 negatively regulates IL-6 signaling in vivo

Abstract

Members of the suppressor of cytokine signaling (SOCS) family are potentially key physiological negative regulators of interleukin-6 (IL-6) signaling. To examine whether SOCS3 is involved in regulating this signaling, we have used conditional gene targeting to generate mice lacking Socs3 in the liver or in macrophages. We show that Socs3 deficiency results in prolonged activation of signal transducer and activator of transcription 1 (STAT1) and STAT3 after IL-6 stimulation but normal activation of STAT1 after stimulation with interferon-γ (IFN-γ). Conversely, IL-6-induced STAT activation is normal in Socs1-deficient cells, whereas STAT1 activation induced by IFN-γ is prolonged. Microarray analysis shows that the pattern of gene expression induced by IL-6 in Socs3-deficient livers mimics that induced by IFN-γ. Our data indicate that SOCS3 and SOCS1 have reciprocal functions in IL-6 and IFN-γ regulation and imply that SOCS3 has a role in preventing IFN-γ-like responses in cells stimulated by IL-6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conditional targeting of the Socs3 gene.
Figure 2: IL-6-induced phosphorylation of STAT3 and STAT1.
Figure 3: Regulation of IL-6 and IFN-γ signaling in Socs3- and Socs1-deficient cells.
Figure 4: IL-6 induces the expression of IFN-γ-inducible genes in the absence of Socs3.
Figure 5: Socs3-deficient macrophages are hyperresponsive to IL-6.

Similar content being viewed by others

References

  1. Van Snick, J. Interleukin-6: an overview. Annu. Rev. Immunol. 8, 253–278 (1990).

    Article  CAS  Google Scholar 

  2. Bernad, A. et al. Interleukin-6 is required in vivo for the regulation of stem cells and committed progenitors of the hematopoietic system. Immunity 1, 725–731 (1994).

    Article  CAS  Google Scholar 

  3. Ramsay, A.J. et al. The role of interleukin-6 in mucosal IgA antibody responses in vivo. Science 264, 561–563 (1994).

    Article  CAS  Google Scholar 

  4. Fattori, E. et al. Defective inflammatory response in interleukin 6–deficient mice. J. Exp. Med. 180, 1243–1250 (1994).

    Article  CAS  Google Scholar 

  5. Hilbert, D.M., Kopf, M., Mock, B.A., Kohler, G. & Rudikoff, S. Interleukin 6 is essential for in vivo development of B lineage neoplasms. J. Exp. Med. 182, 243–248 (1995).

    Article  CAS  Google Scholar 

  6. Kopf, M. et al. Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature 368, 339–342 (1994).

    Article  CAS  Google Scholar 

  7. Taga, T. et al. Interleukin-6 triggers the association of its receptor with a possible signal transducer, gp130. Cell 58, 573–581 (1989).

    Article  CAS  Google Scholar 

  8. O'Shea, J.J., Gadina, M. & Schreiber, R.D. Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 109 (suppl.), S121–S131 (2002).

    Article  CAS  Google Scholar 

  9. Hemmann, U. et al. Differential activation of acute phase response factor/Stat3 and Stat1 via the cytoplasmic domain of the interleukin 6 signal transducer gp130. II. Src homology SH2 domains define the specificity of stat factor activation. J. Biol. Chem. 271, 12999–13007 (1996).

    Article  CAS  Google Scholar 

  10. Alonzi, T. et al. Essential role of STAT3 in the control of the acute-phase response as revealed by inducible gene inactivation in the liver. Mol. Cell. Biol. 21, 1621–1632 (2001).

    Article  CAS  Google Scholar 

  11. Alexander, W.S. Suppressors of cytokine signalling (SOCS) in the immune system. Nat. Rev. Immunol. 2, 410–416 (2002).

    Article  CAS  Google Scholar 

  12. Starr, R. et al. A family of cytokine-inducible inhibitors of signalling. Nature 387, 917–921 (1997).

    Article  CAS  Google Scholar 

  13. Alexander, W.S. et al. SOCS1 is a critical inhibitor of interferon-γ signaling and prevents the potentially fatal neonatal actions of this cytokine. Cell 98, 597–608 (1999).

    Article  CAS  Google Scholar 

  14. Marine, J.C. et al. SOCS1 deficiency causes a lymphocyte-dependent perinatal lethality. Cell 98, 609–616 (1999).

    Article  CAS  Google Scholar 

  15. Metcalf, D. et al. Gigantism in mice lacking suppressor of cytokine signalling-2. Nature 405, 1069–1073 (2000).

    Article  CAS  Google Scholar 

  16. Roberts, A.W. et al. Placental defects and embryonic lethality in mice lacking suppressor of cytokine signaling 3. Proc. Natl. Acad. Sci. 98, 9324–9329 (2001).

    Article  CAS  Google Scholar 

  17. Takahashi, Y. et al. SOCS3: an essential regulator of LIF receptor signaling in trophoblast giant cell differentiation. EMBO J. 22, 372–384 (2003).

    Article  CAS  Google Scholar 

  18. Marine, J.C. et al. SOCS3 is essential in the regulation of fetal liver erythropoiesis. Cell 98, 617–627 (1999).

    Article  CAS  Google Scholar 

  19. Schwenk, F., Baron, U. & Rajewsky, K. A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. Nucleic Acids Res. 23, 5080–5081 (1995).

    Article  CAS  Google Scholar 

  20. Yakar, S. et al. Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc. Natl. Acad. Sci. 96, 7324–7329 (1999).

    Article  CAS  Google Scholar 

  21. Clausen, B.E., Burkhardt, C., Reith, W., Renkawitz, R. & Forster, I. Conditional gene targeting in macrophages and granulocytes using LysM-cre mice. Transgenic Res. 8, 265–277 (1999).

    Article  CAS  Google Scholar 

  22. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).

    Article  CAS  Google Scholar 

  23. Campbell, J.S. et al. Expression of suppressors of cytokine signaling during liver regeneration. J. Clin. Invest. 107, 1285–1292 (2001).

    Article  CAS  Google Scholar 

  24. Hong, F. et al. Opposing roles of STAT1 and STAT3 in T cell–mediated hepatitis: regulation by SOCS. J. Clin. Invest. 110, 1503–1513 (2002).

    Article  CAS  Google Scholar 

  25. Stoiber, D. et al. Lipopolysaccharide induces in macrophages the synthesis of the suppressor of cytokine signaling 3 and suppresses signal transduction in response to the activating factor IFN-γ. J. Immunol. 163, 2640–2647 (1999).

    CAS  PubMed  Google Scholar 

  26. Nicholson, S.E. et al. Mutational analyses of the SOCS proteins suggest a dual domain requirement but distinct mechanisms for inhibition of LIF and IL-6 signal transduction. EMBO J. 18, 375–385 (1999).

    Article  CAS  Google Scholar 

  27. Song, M.M. & Shuai, K. The suppressor of cytokine signaling (SOCS) 1 and SOCS3 but not SOCS2 proteins inhibit interferon-mediated antiviral and antiproliferative activities. J. Biol. Chem. 273, 35056–35062 (1998).

    Article  CAS  Google Scholar 

  28. Brysha, M. et al. Suppressor of cytokine signaling-1 attenuates the duration of interferon-γ signal transduction in vitro and in vivo. J. Biol. Chem. 276, 22086–22089 (2001).

    Article  CAS  Google Scholar 

  29. Takeda, K. et al. Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 10, 39–49 (1999).

    Article  CAS  Google Scholar 

  30. Xaus, J. et al. Interferon-γ induces the expression of p21waf-1 and arrests macrophage cell cycle, preventing induction of apoptosis. Immunity 11, 103–113 (1999).

    Article  CAS  Google Scholar 

  31. Cascio, S. & Zaret, K.S. Hepatocyte differentiation initiates during endodermal-mesenchymal interactions prior to liver formation. Development 113, 217–225 (1991).

    CAS  PubMed  Google Scholar 

  32. Cressman, D.E. et al. Liver failure and defective hepatocyte regeneration in interleukin-6–deficient mice. Science 274, 1379–1383 (1996).

    Article  CAS  Google Scholar 

  33. Costa-Pereira, A.P. et al. Mutational switch of an IL-6 response to an interferon-γ–like response. Proc. Natl. Acad. Sci. 99, 8043–8047 (2002).

    Article  CAS  Google Scholar 

  34. Lee, C. et al. STAT3 is a negative regulator of granulopoiesis but is not required for G-CSF–dependent differentiation. Immunity 17, 63–72 (2002).

    Article  CAS  Google Scholar 

  35. Lang, R. et al. SOCS3 regulates the plasticity of gp130 signaling. Nat. Immunol. advance online publication, 18 May 2003 (doi:10.1038/ni932).

  36. Finbloom, D.S. & Winestock, K.D. IL-10 induces the tyrosine phosphorylation of tyk2 and Jak1 and the differential assembly of STAT1α and STAT3 complexes in human T cells and monocytes. J. Immunol. 155, 1079–1090 (1995).

    CAS  PubMed  Google Scholar 

  37. Cassatella, M.A. et al. Interleukin-10 (IL-10) selectively enhances CIS3/SOCS3 mRNA expression in human neutrophils: evidence for an IL-10-induced pathway that is independent of STAT protein activation. Blood 94, 2880–2889 (1999).

    CAS  PubMed  Google Scholar 

  38. Bertolino, P., Trescol-Biemont, M.C. & Rabourdin-Combe, C. Hepatocytes induce functional activation of naive CD8+ T lymphocytes but fail to promote survival. Eur. J. Immunol. 28, 221–236 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. LeRoith for providing the Alb-cre transgenic mice; G. Panoschi for animal husbandry; S. Cane and J. Mighall for genotyping; and A. Steptoe, L. Hartley and T. Speed for technical assistance. This work was supported by the Australian National Health and Medical Research Council (Program Grant 257500); US National Institutes of Health Grant CA22556; the Cancer Council of Victoria Carden Fellowship (to D.M.) and the Sir Edward Dunlop Clinical Fellowship (to A.W.R.); and AMRAD Operations Pty Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren S Alexander.

Ethics declarations

Competing interests

N.N. and D.J.H. work as consultants for AMRAD Operations Pty Ltd. This company provided support for the work described in this paper.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Croker, B., Krebs, D., Zhang, JG. et al. SOCS3 negatively regulates IL-6 signaling in vivo. Nat Immunol 4, 540–545 (2003). https://doi.org/10.1038/ni931

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni931

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing