Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Corticotropin-releasing hormone promotes blastocyst implantation and early maternal tolerance

Abstract

The semi-allograft embryo in the blastocyst stage implants itself in the endometrium, yet no immune rejection processes are activated. Embryonic trophoblast and maternal decidua produce corticotropin-releasing hormone (CRH) and express Fas ligand (FasL), a proapoptotic cytokine. We found that antalarmin, a CRH receptor type 1 antagonist, decreased FasL expression and promoted apoptosis of activated T lymphocytes, an effect which was potentiated by CRH and inhibited by antalarmin. Female rats treated with antalarmin showed a marked decrease in implantation sites and live embryos and diminished endometrial FasL expression. Embryos from mothers that lacked T cells or from syngeneic matings were not rejected when the mothers were given antalarmin. These findings suggested that locally produced CRH promotes implantation and maintenance of early pregnancy primarily by killing activated T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of CRH in EVT and JEG3 cells.
Figure 2: Flow cytometric analysis and indirect immunofluorescence of CRHR1 in primary human EVT and in JEG3 cells.
Figure 3: FasL expression in EVT and JEG3 cells.
Figure 4: CRH increases apoptosis of activated T lymphocytes cultured with EVT cells.
Figure 5: TUNEL assay for primary EVT cell–induced apoptosis of activated lymphocytes.
Figure 6: Antalarmin decreases fertility in Sprague-Dawley rats without affecting pregnancy rates in nude or Fischer rats.

Similar content being viewed by others

References

  1. Gill, T. J. Immunological and genetic factors influencing pregnancy and development. Am. J. Reprod. Immunol. Microbiol. 10, 116–120 (1986).

    PubMed  Google Scholar 

  2. Nagata, S. Fas and Fas ligand: a death factor and its receptor. Adv. Immunol. 57, 129–144 (1994).

    Article  CAS  Google Scholar 

  3. Suda, T. et al. Expression of the Fas ligand in cells of T cell lineage. J. Immunol. 154, 3806–3813 (1995).

    CAS  PubMed  Google Scholar 

  4. Bellgrau, D. et al. A role for CD95 ligand in preventing graft rejection. Nature 377, 630–632 (1995).

    Article  CAS  Google Scholar 

  5. Griffith, T. S., Yu, X., Herndton, J. M., Green, D. R. & Ferguson, T. A. CD95-induced apoptosis of lymphocytes in an immune privileged site induces immunological tolerance. Immunity 5, 7–16 (1996).

    Article  CAS  Google Scholar 

  6. Nagata, S. Apoptosis by death factor. Cell 88, 355–365 (1997).

    Article  CAS  Google Scholar 

  7. Huang, D. C. et al. Activation of Fas by FasL induces apoptosis by a mechanism that cannot be blocked by Bcl-2 or Bcl-x(L). Proc. Natl Acad. Sci. USA 96, 14871–14876 (1999).

    Article  CAS  Google Scholar 

  8. Bamberger, A. M. et al. Expression of the apoptosis-inducing Fas ligand (FasL) in human first and third trimester placenta and choriocarcinoma cells. J. Clin. Endocrinol. Metab. 82, 3173–3175 (1997).

    Article  CAS  Google Scholar 

  9. Kauma, S. W., Huff, T. F., Hayes, N. & Nilkaeo, A. Placental Fas ligand expression is a mechanism for maternal immune tolerance to the fetus. J. Clin. Endocrinol. Metab. 84, 2188–2194 (1999).

    CAS  PubMed  Google Scholar 

  10. McIntyre, J. A. & Faulk, W. P. Trophoblast antigens in normal and abnormal human pregnancy. Clin. Obstet. Gynecol. 29, 976–98 (1986).

    Article  CAS  Google Scholar 

  11. Martin, J. N. Jr et al. The interrelationship of eclampsia, HELLP syndrome, and prematurity: cofactors for significant maternal and perinatal risk. Br. J. Obstet. Gynaecol. 100, 1095–1100 (1993).

    Article  Google Scholar 

  12. Grino, M., Chrousos, G. P. & Margioris, A. N. The corticotropin releasing hormone gene is expressed in human placenta. Biochem. Biophys. Res. Commun. 148, 1208–1214 (1987).

    Article  CAS  Google Scholar 

  13. Makrigiannakis, A. et al. The corticotropin-releasing hormone (CRH) in normal and tumoral epithelial cells of human endometrium. J. Clin. Endocrinol. Metab. 80, 185–189 (1995).

    CAS  PubMed  Google Scholar 

  14. Frim, D. M. et al. Characterization and gestational regulation of corticotropin-releasing hormone messenger RNA in human placenta. J. Clin. Invest. 82, 287–292 (1988).

    Article  CAS  Google Scholar 

  15. Petraglia, F., Sawchenko, P. E., Rivier, J. & Vale, W. Evidence for local stimulation of ACTH secretion by corticotropin-releasing factor in human placenta. Nature 328, 717–719 (1987)

    Article  CAS  Google Scholar 

  16. Petraglia, F. et al. Human decidua and in vitro decidualized endometrial stromal cells at term contain immunoreactive corticotropin-releasing factor (CRF) and CRF messenger ribonucleic acid. J. Clin. Endocrinol. Metab. 74, 1427–1431 (1992).

    CAS  PubMed  Google Scholar 

  17. Jones, S. A., Brooks, A. N. & Challis, J. R. Steroids modulate corticotropin-releasing hormone production in human fetal membranes and placenta. J. Clin. Endocrinol. Metab. 68, 825–830 (1989).

    Article  CAS  Google Scholar 

  18. Mastorakos, G. et al. Presence of immunoreactive corticotropin releasing hormone (CRH) in human endometrium. J. Clin. Endocrinol. Metab. 81, 1046–1050 (1996).

    CAS  PubMed  Google Scholar 

  19. Clifton, V. L. et al. Corticotropin-releasing hormone and proopiomelanocortin-derived peptides are present in human myometrium. J. Clin. Endocrinol. Metab. 83, 3716–3721 (1998).

    Article  CAS  Google Scholar 

  20. Di Blasio, A. M. et al. Expression of corticotropin-releasing hormone and its R1 receptor in human endometrial stromal cells. J. Clin. Endocrinol. Metab. 82, 1594–1597 (1997).

    Article  CAS  Google Scholar 

  21. Rogers, P. A. Early endometrial microvascular response during implantation in the rat. Reprod. Fertil. Dev. 4, 261–264 (1992).

    Article  CAS  Google Scholar 

  22. Psychoyos, A., Nikas, G. & Gravanis, A. The role of prostaglandins in blastocyst implantation. Hum. Reprod. 10, 30–42 (1995).

    Article  CAS  Google Scholar 

  23. Chrousos, G. P. et al. The corticotropin-releasing factor stimulation test. An aid in the evaluation of patients with Cushing's syndrome. N. Engl. J. Med. 310, 622–626 (1984).

    Article  CAS  Google Scholar 

  24. Karalis, K. et al. Autocrine or paracrine inflammatory actions of corticotropin-releasing hormone in vivo. Science 254, 421–423 (1991).

    Article  CAS  Google Scholar 

  25. Chrousos, G. P., Torpy. D. J. & Gold, P. W. Interactions between the hypothalamic-pituitary-adrenal axis and the female reproductive system: clinical implications. Ann. Intern. Med. 129, 229–240 (1998).

    Article  CAS  Google Scholar 

  26. Webster, E. L. et al. In vivo and in vitro characterization of antalarmin, a nonpeptide corticotropin-releasing hormone (CRH) receptor antagonist: Suppression of pituitary ACTH release and peripheral inflammation. Endocrinology 137, 5747–5750 (1996).

    Article  CAS  Google Scholar 

  27. Udelsman, R., Gallucci, W. T., Bacher, J., Loriaux, D. L. & Chrousos, G. P. Hemodynamic effects of corticotropin releasing hormone in the anesthetized cynomolgus monkey. Peptides 7, 465–471 (1986).

    Article  CAS  Google Scholar 

  28. Theoharides, T. C. et al. Corticotropin-releasing hormone induces skin mast cell degranulation and increased vascular permeability, a possible explanation for its proinflammatory effects. Endocrinology 139, 403–413 (1998).

    Article  CAS  Google Scholar 

  29. Makrigiannakis, A. et al. Corticotropin-releasing hormone (CRH) is expressed at the implantation sites of early pregnant rat uterus. Life Sci. 57, 1869–1875 (1995).

    Article  CAS  Google Scholar 

  30. Athanassakis, I., Farmakiotis, V., Aifantis, I., Gravanis, A. & Vassiliadis, S. Expression of corticotrophin-releasing hormone in the mouse uterus: participation in embryo implantation. J. Endocrinol. 163, 221–227 (1999).

    Article  CAS  Google Scholar 

  31. Zoumakis, E. et al. Corticotrophin-releasing hormone (CRH) interacts with inflammatory prostaglandins and interleukins and affects the decidualization of human endometrial stroma. Mol. Hum. Reprod. 6, 344–351 (2000).

    Article  CAS  Google Scholar 

  32. Phillips, T. A. et al. TRAIL (Apo-2L) and TRAIL receptors in human placentas: implications for immune privilege. J. Immunol. 162, 6053–6059 (1999).

    CAS  PubMed  Google Scholar 

  33. Runic, R., Lockwood, C. J., Ma, Y., Dipasquale, B. & Guller, S. Expression of Fas ligand by human cytotrophoblasts:implication in placentation and fetal survival. J. Clin. Endocrinol. Metab. 81, 3119–3122 (1996).

    CAS  PubMed  Google Scholar 

  34. Sakuragi, N. et al. Differentiation-dependent expression of the BCL-2 proto-oncogene in the human trophoblast lineage. J. Soc. Gynecol. Invest. 1, 164–172 (1994).

    Article  CAS  Google Scholar 

  35. Lockwood, C. J. et al. The role of progestationally regulated stromal cell tissue factor and type-1 plasminogen activator inhibitor (PAI-1) in endometrial hemostasis and menstruation. Ann. NY Acad. Sci. 734, 57–79 (1994).

    Article  CAS  Google Scholar 

  36. Lockwood, C. J. Recent advances in elucidating the pathogenesis of preterm delivery, the detection of patients at risk, and preventative therapies. Curr. Opin. Obstet. Gynecol. 6, 7–18 (1994).

    Article  CAS  Google Scholar 

  37. Psychoyos, A. Uterine receptivity for nidation. Ann. NY Acad. Sci. 476, 36–42 (1986).

    Article  CAS  Google Scholar 

  38. Smith, G. W. et al. Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron 20, 1093–1102 (1998).

    Article  CAS  Google Scholar 

  39. Muglia, L., Jacobson, L., Dikkes, P. & Majzoub, J. A. Corticotropin-releasing hormone deficiency reveals major fetal but not adult glucocorticoid need. Nature 373, 427–432 (1995).

    Article  CAS  Google Scholar 

  40. Bornstein, S. R. et al. Chronic effects of a nonpeptide corticotropin-releasing hormone type I receptor antagonist on pituitary adrenal function, body weight, and metabolic regulation. Endocrinology 139, 1546–1555 (1998).

    Article  CAS  Google Scholar 

  41. Wong, M. L. et al. Chronic administration of the non-peptide CRH type 1 receptor antagonist antalarmin does not blunt hypothalamic-pituitary-adrenal axis responses to acute immobilization stress. Life Sci. 65, PL53–58 (1999).

    Article  CAS  Google Scholar 

  42. Habib, K. E. et al. Oral administration of a corticotropin-releasing hormone receptor antagonist significantly attenuates behavioral, neuroendocrine, and autonomic responses to stress in primates. Proc. Natl Acad. Sci. USA 97, 6079–6084 (2000).

    Article  CAS  Google Scholar 

  43. Chan, E. C. et al. A corticotropin-releasing hormone type I receptor antagonist delays parturition in sheep. Endocrinology 139, 3357–3360 (1998).

    Article  CAS  Google Scholar 

  44. Nathanielsz, P. W. Life in the Womb: The origin of health and disease. (Promethean Press. Ithaca, NY, 1999).

    Google Scholar 

  45. Aboagye-Mathiesen, G., Zdravkovic, M., Toth, F. D. & Ebbesen, P. Effects of human trophoblast-induced interferons on the expression of c-fms/CSF-1R, EGF-R and c-erbB2 in invasive and non-invasive trophoblast. Placenta 18, 155–161 (1997).

    Article  CAS  Google Scholar 

  46. Bamberger, A. M. et al. The adhesion molecule CEACAM1 (CD66a, C-CAM, BGP) is specifically expressed by the extravillous intermediate trophoblast. Am. J. Pathol. 156, 1165–1170 (2000).

    Article  CAS  Google Scholar 

  47. Fischer, S. J. et al. Adhesive and degradative properties of human placental trophoblast cells in vivo. J. Cell. Biol. 109, 891–902 (1989).

    Article  Google Scholar 

  48. Graham, C. H. et al. Establishment and characterization of first trimester human trophoblast cells with extended life-span. Exp. Cell. Res. 206, 204–211 (1993).

    Article  CAS  Google Scholar 

  49. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

  50. Makrigiannakis, A. et al. N-cadherin-mediated human granulosa cell adhesion prevents apoptosis. A role in follicular atresia and luteolysis? Am. J. Pathol. 154, 1391–1406 (1999).

    Article  CAS  Google Scholar 

  51. Laemmni, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article  Google Scholar 

  52. Towbin, H., Stachelin, T. & Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl Acad. Sci. USA 76, 4350–4354 (1979).

    Article  CAS  Google Scholar 

  53. McGahon, A. J. et al. The end of the (cell) line: methods for the study of apoptosis in vitro. Meth. Cell. Biol. 46, 153–185 (1995).

    Article  CAS  Google Scholar 

  54. Bortner, D. M. & Rosenberg, M. P. Overexpression of cyclin A in the mammary glands of transgenic mice results in the induction of nuclear abnormalities and increased apoptosis. Cell Growth Differ. 6, 1579–1589 (1995).

    CAS  PubMed  Google Scholar 

  55. Makrigiannakis, A., Amin, K., Coukos, G., Tilly, J. L. & Coutifaris, C. Regulated expression and potential roles of p53 and Wilms' tumor suppressor gene (WT1) during follicular development in the human ovary. J. Clin. Endocrinol. Metab. 85, 449–459 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by a grant from the Alexander Onassis Foundation (to A. M.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Makrigiannakis or G. P. Chrousos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makrigiannakis, A., Zoumakis, E., Kalantaridou, S. et al. Corticotropin-releasing hormone promotes blastocyst implantation and early maternal tolerance. Nat Immunol 2, 1018–1024 (2001). https://doi.org/10.1038/ni719

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni719

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing