Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3 precursor cells in the absence of interleukin 10

Abstract

CD4+ regulatory T cells (Treg cells) that produce interleukin 10 (IL-10) are important contributors to immune homeostasis. We generated mice with a 'dual-reporter' system of the genes encoding IL-10 and the transcription factor Foxp3 to track Treg subsets based on coordinate or differential expression of these genes. Secondary lymphoid tissues, lung and liver had enrichment of Foxp3+IL-10 Treg cells, whereas the large and small intestine had enrichment of Foxp3+IL-10+ and Foxp3IL-10+ Treg cells, respectively. Although negative for Il10 expression, both Foxp3+ and Foxp3 CD4+ thymic precursor cells gave rise to peripheral IL-10+ Treg cells, with only Foxp3 precursor cells giving rise to all Treg subsets. Each Treg subset developed in IL-10-deficient mice, but this was blocked by treatment with antibody to transforming growth factor-β. Thus, Foxp3+ and Foxp3 precursor cells give rise to peripheral IL-10-expressing Treg cells by a mechanism dependent on transforming growth factor-β and independent of IL-10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intestines and associated lymphoid tissues are enriched for IL-10-competent Thy-1.1+CD4+ T cells.
Figure 2: Cytokine phenotypes of Thy-1.1+ and Thy-1.1 CD4+ T cell subpopulations.
Figure 3: Phenotypic and functional analysis of Treg subsets defined by concordant or differential expression of Il10 and Foxp3.
Figure 4: IL-10-competent Treg cells develop extrathymically from both Foxp3+ and Foxp3 thymic precursor cells.
Figure 5: IL-10 is dispensable for the development of IL-10-competent subsets of Foxp3 and Foxp3+ CD4+ T cells.
Figure 6: TGF-β is required for the development of IL-10-competent Treg cells.

Similar content being viewed by others

References

  1. Fiorentino, D.F., Bond, M.W. & Mosmann, T.R. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J. Exp. Med. 170, 2081–2095 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Fiorentino, D.F. et al. IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells. J. Immunol. 146, 3444–3451 (1991).

    CAS  PubMed  Google Scholar 

  3. Moore, K.W., de Waal Malefyt, R., Coffman, R.L. & O'Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19, 683–765 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. O'Garra, A., Vieira, P.L., Vieira, P. & Goldfeld, A.E. IL-10-producing and naturally occurring CD4+ Tregs: limiting collateral damage. J. Clin. Invest. 114, 1372–1378 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K. & Muller, W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75, 263–274 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Sellon, R.K. et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect. Immun. 66, 5224–5231 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Davidson, N.J. et al. T helper cell 1-type CD4+ T cells, but not B cells, mediate colitis in interleukin 10-deficient mice. J. Exp. Med. 184, 241–251 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Asseman, C., Mauze, S., Leach, M.W., Coffman, R.L. & Powrie, F. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J. Exp. Med. 190, 995–1004 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Roers, A. et al. T cell-specific Inactivation of the interleukin 10 gene in mice results in enhanced T cell responses but normal innate responses to lipopolysaccharide or skin Irritation. J. Exp. Med. 200, 1289–1297 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Izcue, A., Coombes, J.L. & Powrie, F. Regulatory T cells suppress systemic and mucosal immune activation to control intestinal inflammation. Immunol. Rev. 212, 256–271 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Zheng, Y. & Rudensky, A.Y. Foxp3 in control of the regulatory T cell lineage. Nat. Immunol. 8, 457–462 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Jordan, M.S. et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat. Immunol. 2, 301–306 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Apostolou, I., Sarukhan, A., Klein, L. & von Boehmer, H. Origin of regulatory T cells with known specificity for antigen. Nat. Immunol. 3, 756–763 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Fontenot, J.D., Gavin, M.A. & Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Williams, L.M. & Rudensky, A.Y. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat. Immunol. 8, 277–284 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Read, S., Malmstrom, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J. Exp. Med. 192, 295–302 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    CAS  PubMed  Google Scholar 

  19. Tone, M. et al. Mouse glucocorticoid-induced tumor necrosis factor receptor ligand is costimulatory for T cells. Proc. Natl. Acad. Sci. USA 100, 15059–15064 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Weaver, C.T., Harrington, L.E., Mangan, P.R., Gavrieli, M. & Murphy, K.M. Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 24, 677–688 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Groux, H. et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389, 737–742 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Wakkach, A. et al. Characterization of dendritic cells that induce tolerance and T regulatory 1 cell differentiation in vivo. Immunity 18, 605–617 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Groux, H. Type 1 T-regulatory cells: their role in the control of immune responses. Transplantation 75, 8S–12S (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Vieira, P.L. et al. IL-10-secreting regulatory T cells do not express Foxp3 but have comparable regulatory function to naturally occurring CD4+CD25+ regulatory T cells. J. Immunol. 172, 5986–5993 105, 1162–1169 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Levings, M.K. et al. Differentiation of Tr1 cells by immature dendritic cells requires IL-10 but not CD25+CD4+ Treg cells. Blood 105, 1162–1169 (2004).

    Article  PubMed  Google Scholar 

  26. Fontenot, J.D. et al. Regulatory T cell lineage specification by the forkhead transcription factor Foxp3. Immunity 22, 329–341 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Powrie, F., Leach, M.W., Mauze, S., Caddle, L.B. & Coffman, R.L. Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. Int. Immunol. 5, 1461–1471 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Uhlig, H.H. et al. Characterization of Foxp3+CD4+CD25+ and IL-10-secreting CD4+CD25+ T cells during cure of colitis. J. Immunol. 177, 5852–5860 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Lohning, M. et al. Expression of ICOS in vivo defines CD4+ effector T cells with high inflammatory potential and a strong bias for secretion of interleukin 10. J. Exp. Med. 197, 181–193 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Levings, M.K. et al. IFN-α and IL-10 induce the differentiation of human type 1 T regulatory cells. J. Immunol. 166, 5530–5539 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Cong, Y., Weaver, C.T., Lazenby, A. & Elson, C.O. Bacterial-reactive T regulatory cells inhibit pathogenic immune responses to the enteric flora. J. Immunol. 169, 6112–6119 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Roncarolo, M.G. et al. Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol. Rev. 212, 28–50 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Groux, H. et al. A transgenic model to analyze the immunoregulatory role of IL-10 secreted by antigen-presenting cells. J. Immunol. 162, 1723–1729 (1999).

    CAS  PubMed  Google Scholar 

  34. Belkaid, Y. et al. The role of interleukin (IL)-10 in the persistence of Leishmania major in the skin after healing and the therapeutic potential of anti-IL-10 receptor antibody for sterile cure. J. Exp. Med. 194, 1497–1506 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Akbari, O. et al. Antigen-specific regulatory T cells develop via the ICOS-ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity. Nat. Med. 8, 1024–1032 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Stock, P. et al. Induction of T helper type 1-like regulatory cells that express Foxp3 and protect against airway hyper-reactivity. Nat. Immunol. 5, 1149–1156 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Anderson, C.F., Oukka, M., Kuchroo, V.J. & Sacks, D. CD4+CD25Foxp3 Th1 cells are the source of IL-10-mediated immune suppression in chronic cutaneous leishmaniasis. J. Exp. Med. 204, 285–297 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jankovic, D. et al. Conventional T-bet+Foxp3 Th1 cells are the major source of host-protective regulatory IL-10 during intracellular protozoan infection. J. Exp. Med. 204, 273–283 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Weiner, H.L. Oral tolerance: immune mechanisms and the generation of Th3-type TGF-β-secreting regulatory cells. Microbes Infect. 3, 947–954 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Chen, W. et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li, M.O., Sanjabi, S. & Flavell, R.A. Transforming growth factor-β controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity 25, 455–471 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Marie, J.C., Liggitt, D. & Rudensky, A.Y. Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-β receptor. Immunity 25, 441–454 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Kitani, A. et al. Transforming growth factor (TGF)-β1-producing regulatory T cells induce Smad-mediated interleukin 10 secretion that facilitates coordinated immunoregulatory activity and amelioration of TGF-β1-mediated fibrosis. J. Exp. Med. 198, 1179–1188 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Mangan, P.R. et al. Transforming growth factor-β induces development of the TH17 lineage. Nature 441, 231–234 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Van Montfrans, C. et al. Prevention of colitis by interleukin 10-transduced T lymphocytes in the SCID mice transfer model. Gastroenterology 123, 1865–1876 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Marie, J.C., Letterio, J.J., Gavin, M. & Rudensky, A.Y. TGF-β1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J. Exp. Med. 201, 1061–1067 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Poussier, P., Ning, T., Banerjee, D. & Julius, M. A unique subset of selfspecific intraintestinal T cells maintains gut integrity. J. Exp. Med. 195, 1491–1497 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Foussat, A. et al. A comparative study between T regulatory type 1 and CD4+CD25+ T cells in the control of inflammation. J. Immunol. 171, 5018–5026 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Mucida, D. et al. Oral tolerance in the absence of naturally occurring Tregs. J. Clin. Invest. 115, 1923–1933 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Defrance, T. et al. Interleukin 10 and transforming growth factor β cooperate to induce anti-CD40-activated naive human B cells to secrete immunoglobulin A. J. Exp. Med. 175, 671–682 (1992).

    Article  CAS  PubMed  Google Scholar 

  53. Cazac, B.B. & Roes, J. TGF-β receptor controls B cell responsiveness and induction of IgA in vivo. Immunity 13, 443–451 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Brooks, D.G., Teyton, L., Oldstone, M.B. & McGavern, D.B. Intrinsic functional dysregulation of CD4 T cells occurs rapidly following persistent viral infection. J. Virol. 79, 10514–10527 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kamanaka, M. et al. Expression of interleukin-10 in intestinal lymphocytes detected by an interleukin-10 reporter knockin tiger mouse. Immunity 25, 941–952 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Chaplin, C. Elson, R. Lorenz, L. Timares, M. Walter and members of the Weaver laboratory for comments and suggestions; C. Song and M. Blake for technical assistance; and N. LeLievre for editorial assistance. Supported by the National Institutes of Health (C.T.W.), the Crohn's and Colitis Foundation of America (C.T.W. and L.E.H.) and the Howard Hughes Medical Institute (A.Y.R.).

Author information

Authors and Affiliations

Authors

Contributions

C.L.M. did all experiments and collected and analyzed all data with assistance from L.E.H. and C.T.W.; K.M.J. assisted in the development of transgenic mice; J.R.O. provided animal breeding and genotyping technical support; C.L.Z. assisted in the design and execution of immunofluorescence studies; A.Y.R. contributed mice and expertise for some reporter mouse studies; and C.L.M. and C.T.W. wrote the manuscript.

Corresponding author

Correspondence to Casey T Weaver.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Methods (PDF 2126 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maynard, C., Harrington, L., Janowski, K. et al. Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3 precursor cells in the absence of interleukin 10. Nat Immunol 8, 931–941 (2007). https://doi.org/10.1038/ni1504

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1504

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing