Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells

This article has been updated

Abstract

Cell differentiation involves activation and silencing of lineage-specific genes. Here we show that the transcription factor Runx3 is induced in T helper type 1 (TH1) cells in a T-bet-dependent manner, and that both transcription factors T-bet and Runx3 are required for maximal production of interferon-γ (IFN-γ) and silencing of the gene encoding interleukin 4 (Il4) in TH1 cells. T-bet does not repress Il4 in Runx3-deficient TH2 cells, but coexpression of Runx3 and T-bet induces potent repression in those cells. Both T-bet and Runx3 bind to the Ifng promoter and the Il4 silencer, and deletion of the silencer decreases the sensitivity of Il4 to repression by either factor. Our data indicate that cytokine gene expression in TH1 cells may be controlled by a feed-forward regulatory circuit in which T-bet induces Runx3 and then 'partners' with Runx3 to direct lineage-specific gene activation and silencing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of Runx in peripheral T cells.
Figure 2: Runx3 contributes to activation of Ifng.
Figure 3: Runx3 binds to the Ifng promoter.
Figure 4: Runx3-deficient TH1 cells aberrantly express IL-4.
Figure 5: T-bet and Runx3 cooperate in repression of IL-4.
Figure 6: The Il4 silencer contributes to Runx3- and T-bet-mediated repression of IL-4.
Figure 7: T-bet and Runx3 interact with each other and the Il4 silencer.

Similar content being viewed by others

Change history

  • 17 January 2007

    In the version of this article initially published online, two labels in Figure 1e are reversed and two sequences in Figure 7a are reversed. The labels ‘IB: Runx3’ and ‘IB: T-bet’ should be switched, and the sequences for ‘HS IV probe’ and ‘T-box mutant’ should be switched. The errors have been corrected for all versions of the article.

References

  1. Szabo, S.J., Sullivan, B.M., Peng, S.L. & Glimcher, L.H. Molecular mechanisms regulating Th1 immune responses. Annu. Rev. Immunol. 21, 713–758 (2003).

    Article  CAS  Google Scholar 

  2. Berenson, L.S., Ota, N. & Murphy, K.M. Issues in T-helper 1 development—resolved and unresolved. Immunol. Rev. 202, 157–174 (2004).

    Article  CAS  Google Scholar 

  3. Ansel, K.M., Djuretic, I., Tanasa, B. & Rao, A. Regulation of Th2 differentiation and Il4 locus accessibility. Annu. Rev. Immunol. 24, 607–656 (2006).

    Article  CAS  Google Scholar 

  4. Stetson, D.B. et al. Th2 cells: orchestrating barrier immunity. Adv. Immunol. 83, 163–189 (2004).

    Article  CAS  Google Scholar 

  5. Grogan, J.L. et al. Basal chromatin modification at the IL-4 gene in helper T cells. J. Immunol. 171, 6672–6679 (2003).

    Article  CAS  Google Scholar 

  6. Baguet, A. & Bix, M. Chromatin landscape dynamics of the Il4-Il13 locus during T helper 1 and 2 development. Proc. Natl. Acad. Sci. USA 101, 11410–11415 (2004).

    Article  CAS  Google Scholar 

  7. Ansel, K.M., Lee, D.U. & Rao, A. An epigenetic view of helper T cell differentiation. Nat. Immunol. 4, 616–623 (2003).

    Article  CAS  Google Scholar 

  8. Spilianakis, C.G. & Flavell, R.A. Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nat. Immunol. 5, 1017–1027 (2004).

    Article  CAS  Google Scholar 

  9. Reiner, S.L. Epigenetic control in the immune response. Hum. Mol. Genet. 14 (Suppl. 1), R41–R46 (2005).

    Article  CAS  Google Scholar 

  10. Szabo, S.J. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655–669 (2000).

    Article  CAS  Google Scholar 

  11. Lee, D.U., Avni, O., Chen, L. & Rao, A. A distal enhancer in the interferon-γ (IFN-γ) locus revealed by genome sequence comparison. J. Biol. Chem. 279, 4802–4810 (2004).

    Article  CAS  Google Scholar 

  12. Shnyreva, M. et al. Evolutionarily conserved sequence elements that positively regulate IFN-γ expression in T cells. Proc. Natl. Acad. Sci. USA 101, 12622–12627 (2004).

    Article  CAS  Google Scholar 

  13. Afkarian, M. et al. T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nat. Immunol. 3, 549–557 (2002).

    Article  CAS  Google Scholar 

  14. Mullen, A.C. et al. Hlx is induced by and genetically interacts with T-bet to promote heritable TH1 gene induction. Nat. Immunol. 3, 652–658 (2002).

    Article  CAS  Google Scholar 

  15. Zheng, W.P. et al. Up-regulation of Hlx in immature Th cells induces IFN-γ expression. J. Immunol. 172, 114–122 (2004).

    Article  CAS  Google Scholar 

  16. Usui, T. et al. T-bet regulates Th1 responses through essential effects on GATA-3 function rather than on IFNG gene acetylation and transcription. J. Exp. Med. 203, 755–766 (2006).

    Article  CAS  Google Scholar 

  17. Hwang, E.S., Szabo, S.J., Schwartzberg, P.L. & Glimcher, L.H. T helper cell fate specified by kinase-mediated interaction of T-bet with GATA-3. Science 307, 430–433 (2005).

    Article  CAS  Google Scholar 

  18. Lee, G.R., Kim, S.T., Spilianakis, C.G., Fields, P.E. & Flavell, R.A. T helper cell differentiation: regulation by cis elements and epigenetics. Immunity 24, 369–379 (2006).

    Article  CAS  Google Scholar 

  19. Nardone, J., Lee, D.U., Ansel, K.M. & Rao, A. Bioinformatics for the 'bench biologist': how to find regulatory regions in genomic DNA. Nat. Immunol. 5, 768–774 (2004).

    Article  CAS  Google Scholar 

  20. Agarwal, S., Avni, O. & Rao, A. Cell-type-restricted binding of the transcription factor NFAT to a distal IL-4 enhancer in vivo. Immunity 12, 643–652 (2000).

    Article  CAS  Google Scholar 

  21. Solymar, D.C., Agarwal, S., Bassing, C.H., Alt, F.W. & Rao, A. A 3′ enhancer in the IL-4 gene regulates cytokine production by Th2 cells and mast cells. Immunity 17, 41–50 (2002).

    Article  CAS  Google Scholar 

  22. Mohrs, M. et al. Deletion of a coordinate regulator of type 2 cytokine expression in mice. Nat. Immunol. 2, 842–847 (2001).

    Article  CAS  Google Scholar 

  23. Fields, P.E., Lee, G.R., Kim, S.T., Bartsevich, V.V. & Flavell, R.A. Th2-specific chromatin remodeling and enhancer activity in the Th2 cytokine locus control region. Immunity 21, 865–876 (2004).

    Article  CAS  Google Scholar 

  24. Lee, G.R., Fields, P.E., Griffin, T.J. & Flavell, R.A. Regulation of the Th2 cytokine locus by a locus control region. Immunity 19, 145–153 (2003).

    Article  CAS  Google Scholar 

  25. Lee, D.U. & Rao, A. Molecular analysis of a locus control region in the T helper 2 cytokine gene cluster: a target for STAT6 but not GATA3. Proc. Natl. Acad. Sci. USA 101, 16010–16015 (2004).

    Article  CAS  Google Scholar 

  26. Tanaka, S. et al. The Interleukin-4 enhancer CNS-2 is regulated by Notch signals and controls initial expression in NKT cells and memory-type CD4 T cells. Immunity 24, 689–701 (2006).

    CAS  PubMed  Google Scholar 

  27. Ansel, K.M. et al. Deletion of a conserved Il4 silencer impairs T helper type 1–mediated immunity. Nat. Immunol. 5, 1251–1259 (2004).

    Article  CAS  Google Scholar 

  28. Levanon, D. & Groner, Y. Structure and regulated expression of mammalian RUNX genes. Oncogene 23, 4211–4219 (2004).

    Article  CAS  Google Scholar 

  29. Lee, J., Ahnn, J. & Bae, S.C. Homologs of RUNX and CBFβ/PEBP2β in C. elegans. Oncogene 23, 4346–4352 (2004).

    Article  CAS  Google Scholar 

  30. Taniuchi, I. & Littman, D.R. Epigenetic gene silencing by Runx proteins. Oncogene 23, 4341–4345 (2004).

    Article  CAS  Google Scholar 

  31. Durst, K.L. & Hiebert, S.W. Role of RUNX family members in transcriptional repression and gene silencing. Oncogene 23, 4220–4224 (2004).

    Article  CAS  Google Scholar 

  32. Westendorf, J.J. & Hiebert, S.W. Mammalian runt-domain proteins and their roles in hematopoiesis, osteogenesis, and leukemia. J. Cell. Biochem. 75 (Suppl. S32), 51–58 (1999).

    Article  Google Scholar 

  33. Blyth, K., Cameron, E.R. & Neil, J.C. The RUNX genes: gain or loss of function in cancer. Nat. Rev. Cancer 5, 376–387 (2005).

    Article  CAS  Google Scholar 

  34. Lian, J.B. et al. Regulatory controls for osteoblast growth and differentiation: role of Runx/Cbfa/AML factors. Crit. Rev. Eukaryot. Gene Expr. 14, 1–41 (2004).

    Article  CAS  Google Scholar 

  35. de Bruijn, M.F. & Speck, N.A. Core-binding factors in hematopoiesis and immune function. Oncogene 23, 4238–4248 (2004).

    Article  CAS  Google Scholar 

  36. Zhong, J., Pevny, L. & Snider, W.D. 'Runx'ing towards sensory differentiation. Neuron 49, 325–327 (2006).

    Article  CAS  Google Scholar 

  37. Taniuchi, I. et al. Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell 111, 621–633 (2002).

    Article  CAS  Google Scholar 

  38. Woolf, E. et al. Runx3 and Runx1 are required for CD8 T cell development during thymopoiesis. Proc. Natl. Acad. Sci. USA 100, 7731–7736 (2003).

    Article  CAS  Google Scholar 

  39. Sato, T. et al. Dual functions of Runx proteins for reactivating CD8 and silencing CD4 at the commitment process into CD8 thymocytes. Immunity 22, 317–328 (2005).

    Article  CAS  Google Scholar 

  40. Grueter, B. et al. Runx3 regulates integrin αE/CD103 and CD4 expression during development of CD4/CD8+ T cells. J. Immunol. 175, 1694–1705 (2005).

    Article  CAS  Google Scholar 

  41. Yarmus, M. et al. Groucho/transducin-like Enhancer-of-split (TLE)-dependent and -independent transcriptional regulation by Runx3. Proc. Natl. Acad. Sci. USA 103, 7384–7389 (2006).

    Article  CAS  Google Scholar 

  42. Komine, O. et al. The Runx1 transcription factor inhibits the differentiation of naive CD4+ T cells into the Th2 lineage by repressing GATA3 expression. J. Exp. Med. 198, 51–61 (2003).

    Article  CAS  Google Scholar 

  43. Cho, J.Y., Grigura, V., Murphy, T.L. & Murphy, K. Identification of cooperative monomeric Brachyury sites conferring T-bet responsiveness to the proximal IFN-γ promoter. Int. Immunol. 15, 1149–1160 (2003).

    Article  CAS  Google Scholar 

  44. Agarwal, S. & Rao, A. Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation. Immunity 9, 765–775 (1998).

    CAS  Google Scholar 

  45. Takemoto, N. et al. Th2-specific DNAse I–hypersensitive sites in the murine IL-13 and IL-4 intergenic region. Int. Immunol. 10, 1981–1985 (1998).

    Article  CAS  Google Scholar 

  46. Cirillo, L.A. et al. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol. Cell 9, 279–289 (2002).

    Article  CAS  Google Scholar 

  47. Medina, K.L. et al. Assembling a gene regulatory network for specification of the B cell fate. Dev. Cell 7, 607–617 (2004).

    Article  CAS  Google Scholar 

  48. Davidson, E.H. Genomic Regulatory Systems: Development and Evolution (Academic Press, San Diego, CA, 2001).

    Google Scholar 

  49. Hutchins, A.S. et al. Cutting edge: a critical role for gene silencing in preventing excessive type 1 immunity. J. Immunol. 175, 5606–5610 (2005).

    Article  CAS  Google Scholar 

  50. Brenner, O. et al. Loss of Runx3 function in leukocytes is associated with spontaneously developed colitis and gastric mucosal hyperplasia. Proc. Natl. Acad. Sci. USA 101, 16016–16021 (2004).

    Article  CAS  Google Scholar 

  51. Fainaru, O. et al. Runx3 regulates mouse TGF-β-mediated dendritic cell function and its absence results in airway inflammation. EMBO J. 23, 969–979 (2004).

    Article  CAS  Google Scholar 

  52. Finotto, S. et al. Development of spontaneous airway changes consistent with human asthma in mice lacking T-bet. Science 295, 336–338 (2002).

    Article  CAS  Google Scholar 

  53. Fainaru, O., Shseyov, D., Hantisteanu, S. & Groner, Y. Accelerated chemokine receptor 7–mediated dendritic cell migration in Runx3 knockout mice and the spontaneous development of asthma-like disease. Proc. Natl. Acad. Sci. USA 102, 10598–10603 (2005).

    Article  CAS  Google Scholar 

  54. Levanon, D. et al. The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. EMBO J. 21, 3454–3463 (2002).

    Article  CAS  Google Scholar 

  55. Ranganath, S. et al. GATA-3-dependent enhancer activity in IL-4 gene regulation. J. Immunol. 161, 3822–3826 (1998).

    CAS  Google Scholar 

  56. Aziz-Aloya, R.B. et al. Expression of AML1-d, a short human AML1 isoform, in embryonic stem cells suppresses in vivo tumor growth and differentiation. Cell Death Differ. 5, 765–773 (1998).

    Article  CAS  Google Scholar 

  57. Le, X.F. et al. Regulation of AML2/CBFA3 in hematopoietic cells through the retinoic acid receptor α-dependent signaling pathway. J. Biol. Chem. 274, 21651–21658 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Glimcher for Tbx21−/− mice, polyclonal antibody to T-bet, and Runx1 and Runx3 pCDNA3 expression plasmids; R. Locksley for DO11.10 Tcra,Tcrb transgenic Tcra−/− mice; K. Murphy for the parent retroviral vector GFP-RV; V. Heissmeyer for the pMSCV-IRES-Thy1.1 vector; G.P. Nolan for Phoenix cells; D. Bolton and L. Smith for technical support; J. Chermesh and R. Saka for help with animal husbandry; and F. Cruz-Guilloty and M. Keir for advice. Supported by the National Institutes of Health (AI44432 and HL67664 to A.R.), Sandler Program for Asthma Research (A.R.), The Leukemia and Lymphoma Society (K.M.A.) and the Israel Science Foundation (Y.G. and D.L.).

Author information

Authors and Affiliations

Authors

Contributions

I.M.D. did all the experiments with the direction and supervision of K.M.A. and A.R.; and D.L. and V.N. assisted in the analysis of Runx3-deficient T cells under the supervision of Y.G.

Corresponding authors

Correspondence to Anjana Rao or K Mark Ansel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Runx1 and Tbx21 mRNA expression. (PDF 971 kb)

Supplementary Fig. 2

Runx3 regulates IL-2 production. (PDF 371 kb)

Supplementary Fig. 3

Runx1 can bind the Ifng promoter and Il4 silencer. (PDF 302 kb)

Supplementary Fig. 4

Quantification of HS IV-dependent Runx3- and T-bet-mediated IL-4 repression. (PDF 372 kb)

Supplementary Fig. 5

Conserved T-box and Runx consensus binding sequences in HS IV. (PDF 469 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Djuretic, I., Levanon, D., Negreanu, V. et al. Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells. Nat Immunol 8, 145–153 (2007). https://doi.org/10.1038/ni1424

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1424

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing