Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Clonal deletion of thymocytes by circulating dendritic cells homing to the thymus

A Corrigendum to this article was published on 01 November 2006

This article has been updated

Abstract

Dendritic cell (DC) presentation of self antigen to thymocytes is essential to the establishment of central tolerance. We show here that circulating DCs were recruited to the thymic medulla through a three-step adhesion cascade involving P-selectin, interactions of the integrin VLA-4 with its ligand VCAM-1, and pertussis toxin–sensitive chemoattractant signaling. Ovalbumin-specific OT-II thymocytes were selectively deleted after intravenous injection of antigen-loaded exogenous DCs. We documented migration of endogenous DCs to the thymus in parabiotic mice and after painting mouse skin with fluorescein isothiocyanate. Antibody to VLA-4 blocked the accumulation of peripheral tissue–derived DCs in the thymus and also inhibited the deletion of OT-II thymocytes in mice expressing membrane-bound ovalbumin in cardiac myocytes. These findings identify a migratory route by which peripheral DCs may contribute to central tolerance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Blood-borne DCs are recruited to the thymus and localize to the medulla.
Figure 2: Phenotype of DCs recruited to the thymus.
Figure 3: P-selectin and VLA-4–VCAM-1 interactions mediate the recruitment of DCs to the thymus.
Figure 4: Gαi-mediated signaling is required for homing of DCs to the thymus.
Figure 5: Circulating DCs recruited to the thymus induce apoptosis and clonal deletion of antigen-specific thymocytes.
Figure 6: Presentation of agonist peptide by blood-borne DCs does not induce intrathymic differentiation of OT-II regulatory T cells.
Figure 7: Migration of endogenous DCs to the thymus.
Figure 8: Clonal deletion of OT-II thymocytes in CMy-mOVA mice depends on α4 integrin function.

Similar content being viewed by others

Change history

  • 29 September 2006

    In the version of this article initially published, the third sentence in the legend of Figure 6 is incorrect. The correct sentence should read “*, P < 0.01, and **, P < 0.001, compared with DCs”. In the last sentence of the legend to Figure 8, ‘obtainted’ should read ‘obtained’. On page 1098, in the first sentence of the first full paragraph, ‘fused’ should read ‘used’. These errors have been corrected in the HTML and PDF versions of the article.

References

  1. Palmer, E. Negative selection–clearing out the bad apples from the T-cell repertoire. Nat. Rev. Immunol. 3, 383–391 (2003).

    Article  CAS  Google Scholar 

  2. Jordan, M.S. et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat. Immunol. 2, 301–306 (2001).

    Article  CAS  Google Scholar 

  3. Sakaguchi, S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 22, 531–562 (2004).

    Article  CAS  Google Scholar 

  4. Anderson, M.S. et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 298, 1395–1401 (2002).

    Article  CAS  Google Scholar 

  5. Kyewski, B. & Derbinski, J. Self-representation in the thymus: an extended view. Nat. Rev. Immunol. 4, 688–698 (2004).

    Article  CAS  Google Scholar 

  6. Banchereau, J. et al. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767–811 (2000).

    Article  CAS  Google Scholar 

  7. Steinman, R.M., Hawiger, D. & Nussenzweig, M.C. Tolerogenic dendritic cells. Annu. Rev. Immunol. 21, 685–711 (2003).

    Article  CAS  Google Scholar 

  8. Cavanagh, L.L. et al. Activation of bone marrow-resident memory T cells by circulating, antigen-bearing dendritic cells. Nat. Immunol. 6, 1029–1037 (2005).

    Article  CAS  Google Scholar 

  9. Bonasio, R. & von Andrian, U.H. Generation, migration and function of circulating dendritic cells. Curr. Opin. Immunol. 18, 503–511 (2006).

    Article  CAS  Google Scholar 

  10. Wu, L. & Shortman, K. Heterogeneity of thymic dendritic cells. Semin. Immunol. 17, 304–312 (2005).

    Article  CAS  Google Scholar 

  11. Shortman, K. & Liu, Y.J. Mouse and human dendritic cell subtypes. Nat. Rev. Immunol. 2, 151–161 (2002).

    Article  CAS  Google Scholar 

  12. Iwasaki, A. & Kelsall, B.L. Localization of distinct Peyer's patch dendritic cell subsets and their recruitment by chemokines macrophage inflammatory protein (MIP)-3α, MIP-3β, and secondary lymphoid organ chemokine. J. Exp. Med. 191, 1381–1394 (2000).

    Article  CAS  Google Scholar 

  13. Mora, J.R. et al. Reciprocal and dynamic control of CD8 T cell homing by dendritic cells from skin- and gut-associated lymphoid tissues. J. Exp. Med. 201, 303–316 (2005).

    Article  CAS  Google Scholar 

  14. Cavanagh, L.L. & von Andrian, U.H. Travellers in many guises: The origins and destinations of dendritic cells. Immunol. Cell Biol. 80, 448–462 (2002).

    Article  Google Scholar 

  15. von Andrian, U.H. & Mackay, C.R. T-cell function and migration. Two sides of the same coin. N. Engl. J. Med. 343, 1020–1034 (2000).

    Article  CAS  Google Scholar 

  16. Berlin, C. et al. α4 integrins mediate lymphocyte attachment and rolling under physiologic flow. Cell 80, 413–422 (1995).

    Article  CAS  Google Scholar 

  17. Mazo, I.B. et al. Hematopoietic progenitor cell rolling in bone marrow microvessels: Parallel contributions by endothelial selectins and VCAM-1. J. Exp. Med. 188, 465–474 (1998).

    Article  CAS  Google Scholar 

  18. Barnden, M.J., Allison, J., Heath, W.R. & Carbone, F.R. Defective TCR expression in transgenic mice constructed using cDNA-based α- and β-chain genes under the control of heterologous regulatory elements. Immunol. Cell Biol. 76, 34–40 (1998).

    Article  CAS  Google Scholar 

  19. Martin, S. & Bevan, M.J. Antigen-specific and nonspecific deletion of immature cortical thymocytes caused by antigen injection. Eur. J. Immunol. 27, 2726–2736 (1997).

    Article  CAS  Google Scholar 

  20. van Santen, H.M., Benoist, C. & Mathis, D. Number of T reg cells that differentiate does not increase upon encounter of agonist ligand on thymic epithelial cells. J. Exp. Med. 200, 1221–1230 (2004).

    Article  CAS  Google Scholar 

  21. Donskoy, E. & Goldschneider, I. Two developmentally distinct populations of dendritic cells inhabit the adult mouse thymus: demonstration by differential importation of hematogenous precursors under steady state conditions. J. Immunol. 170, 3514–3521 (2003).

    Article  CAS  Google Scholar 

  22. Randolph, G.J., Angeli, V. & Swartz, M.A. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat. Rev. Immunol. 5, 617–628 (2005).

    Article  CAS  Google Scholar 

  23. Grabie, N. et al. IL-12 is required for differentiation of pathogenic CD8+ T cell effectors that cause myocarditis. J. Clin. Invest. 111, 671–680 (2003).

    Article  CAS  Google Scholar 

  24. Volkmann, A., Zal, T. & Stockinger, B. Antigen-presenting cells in the thymus that can negatively select MHC class II-restricted T cells recognizing a circulating self antigen. J. Immunol. 158, 693–706 (1997).

    CAS  PubMed  Google Scholar 

  25. Gallegos, A.M. & Bevan, M.J. Central tolerance to tissue-specific antigens mediated by direct and indirect antigen presentation. J. Exp. Med. 200, 1039–1049 (2004).

    Article  CAS  Google Scholar 

  26. Balazs, M., Martin, F., Zhou, T. & Kearney, J. Blood dendritic cells interact with splenic marginal zone B cells to initiate T-independent immune responses. Immunity 17, 341–352 (2002).

    Article  CAS  Google Scholar 

  27. del Hoyo, G.M. et al. Characterization of a common precursor population for dendritic cells. Nature 415, 1043–1047 (2002).

    Article  Google Scholar 

  28. Naik, S.H. et al. Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes. Nat. Immunol. 7, 663–671 (2006).

    Article  CAS  Google Scholar 

  29. Nakano, H., Yanagita, M. & Gunn, M.D. CD11c+B220+Gr-1+ cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells. J. Exp. Med. 194, 1171–1178 (2001).

    Article  CAS  Google Scholar 

  30. Fong, L., Brockstedt, D., Benike, C., Wu, L. & Engleman, E.G. Dendritic cells injected via different routes induce immunity in cancer patients. J. Immunol. 166, 4254–4259 (2001).

    Article  CAS  Google Scholar 

  31. Thurner, B. et al. Vaccination with Mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J. Exp. Med. 190, 1669–1678 (1999).

    Article  CAS  Google Scholar 

  32. Duncan, S.R., Capetanakis, N.G., Lawson, B.R. & Theofilopoulos, A.N. Thymic dendritic cells traffic to thymi of allogeneic recipients and prolong graft survival. J. Clin. Invest. 109, 755–764 (2002).

    Article  CAS  Google Scholar 

  33. Scimone, M.L., Aifantis, I., Apostolou, I., von Boehmer, H. & von Andrian, U.H. A multistep adhesion cascade for lymphoid progenitor cell homing to the thymus. Proc. Natl. Acad. Sci. USA 103, 7006–7011 (2006).

    Article  CAS  Google Scholar 

  34. Matzinger, P. & Guerder, S. Does T-cell tolerance require a dedicated antigen-presenting cell? Nature 338, 74–76 (1989).

    Article  CAS  Google Scholar 

  35. Ardavin, C., Wu, L., Li, C.L. & Shortman, K. Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population. Nature 362, 761–763 (1993).

    Article  CAS  Google Scholar 

  36. Goldschneider, I. & Cone, R.E. A central role for peripheral dendritic cells in the induction of acquired thymic tolerance. Trends Immunol. 24, 77–81 (2003).

    Article  CAS  Google Scholar 

  37. Kamath, A.T., Henri, S., Battye, F., Tough, D.F. & Shortman, K. Developmental kinetics and lifespan of dendritic cells in mouse lymphoid organs. Blood 100, 1734–1741 (2002).

    CAS  PubMed  Google Scholar 

  38. Miller, M.J., Hejazi, A.S., Wei, S.H., Cahalan, M.D. & Parker, I. T cell repertoire scanning is promoted by dynamic dendritic cell behavior and random T cell motility in the lymph node. Proc. Natl. Acad. Sci. USA 101, 998–1003 (2004).

    Article  CAS  Google Scholar 

  39. Kurts, C., Kosaka, H., Carbone, F.R., Miller, J.F. & Heath, W.R. Class I-restricted cross-presentation of exogenous self-antigens leads to deletion of autoreactive CD8+ T cells. J. Exp. Med. 186, 239–245 (1997).

    Article  CAS  Google Scholar 

  40. Klein, L., Klugmann, M., Nave, K.A., Tuohy, V.K. & Kyewski, B. Shaping of the autoreactive T-cell repertoire by a splice variant of self protein expressed in thymic epithelial cells. Nat. Med. 6, 56–61 (2000).

    Article  CAS  Google Scholar 

  41. Huseby, E.S., Sather, B., Huseby, P.G. & Goverman, J. Age-dependent T cell tolerance and autoimmunity to myelin basic protein. Immunity 14, 471–481 (2001).

    Article  CAS  Google Scholar 

  42. Bullard, D.C. et al. P-selectin/ICAM-1 double mutant mice: acute emigration of neutrophils into the peritoneum is completely absent but is normal into pulmonary alveoli. J. Clin. Invest. 95, 1782–1788 (1995).

    Article  CAS  Google Scholar 

  43. Mayadas, T.N., Johnson, R.C., Rayburn, H., Hynes, R.O. & Wagner, D.D. Leukocyte rolling and extravasation are severely compromised in P-selectin-deficient mice. Cell 74, 541–554 (1993).

    Article  CAS  Google Scholar 

  44. Koni, P.A. et al. Conditional vascular cell adhesion molecule 1 deletion in mice. Impaired lymphocyte migration to bone marrow. J. Exp. Med. 193, 741–754 (2001).

    Article  CAS  Google Scholar 

  45. Mombaerts, P. et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869–877 (1992).

    Article  CAS  Google Scholar 

  46. Boes, M. et al. T cells induce extended class II MHC compartments in dendritic cells in a Toll-like receptor-dependent manner. J. Immunol. 171, 4081–4088 (2003).

    Article  CAS  Google Scholar 

  47. Mora, J.R. et al. Selective imprinting of gut-homing T cells by Peyer's patch dendritic cells. Nature 424, 88–93 (2003).

    Article  CAS  Google Scholar 

  48. Porritt, H.E., Gordon, K. & Petrie, H.T. Kinetics of steady-state differentiation and mapping of intrathymic-signaling environments by stem cell transplantation in nonirradiated mice. J. Exp. Med. 198, 957–962 (2003).

    Article  CAS  Google Scholar 

  49. Farr, A.G. & Anderson, S.K. Epithelial heterogeneity in the murine thymus: fucose-specific lectins bind medullary epithelial cells. J. Immunol. 134, 2971–2977 (1985).

    CAS  PubMed  Google Scholar 

  50. Wright, D.E., Wagers, A.J., Gulati, A.P., Johnson, F.L. & Weissman, I.L. Physiological migration of hematopoietic stem and progenitor cells. Science 294, 1933–1936 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Cheng for technical support; L. Cavanagh, T. Junt and I.B. Mazo for discussions; and S. Massberg for contributing thoracic duct lymph data. Supported by the National Institutes of Health (AI061663, AR42689 and HL56949 to U.H.v.A.; and HL072056 and AI059610 to A.H.L.), the Giovanni Armenise-Harvard Foundation (R.B.) and the Schweizerische Stiftung für medizinisch-biologische Stipendien (P.S.).

Author information

Authors and Affiliations

Authors

Contributions

R.B. designed and executed all experiments, unless otherwise stated; M.L.S. equally contributed to the design and realization of all adoptive transfers (Figs. 2,3,4,5,6); P.S. generated parabiotic mice; N.G. and A.H.L. provided CMy-mOVA-transgenic mice; and R.B. and U.H.v.A. prepared the manuscript with help from M.L.S.

Corresponding author

Correspondence to Ulrich H von Andrian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Fully differentiated DCs in blood and thoracic duct lymph. (PDF 174 kb)

Supplementary Fig. 2

Schematic diagram of the experimental protocol for the generation of mixed BM chimeras in figures 5, 6 and supplementary figure 3. (PDF 46 kb)

Supplementary Fig. 3

Clonal deletion of OT-II cells by adoptive transfer of different doses of DCs. (PDF 102 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonasio, R., Scimone, M., Schaerli, P. et al. Clonal deletion of thymocytes by circulating dendritic cells homing to the thymus. Nat Immunol 7, 1092–1100 (2006). https://doi.org/10.1038/ni1385

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1385

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing