Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Limiting inflammatory responses during activation of innate immunity

Abstract

The idea of the importance of mounting an inflammatory response for effective immunity is supported by a multiplicity of experimental data. It is also well understood that resolution of inflammation is essential for maintaining the balance between health and disease. When the normal regulatory mechanisms are disturbed, the potential for developing chronic inflammatory diseases is increased. Inflammation is a key element in the response of the innate immune system to a variety of challenges, including those provided by bacterial and viral infection as well as by damaged or dying host cells. Here we review elements of innate immunity that lead to inflammation and some of the host mechanisms that allow for the resolution of the inflammatory responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Receptors of the innate immune system.
Figure 2: Control of the expression of inflammatory genes.
Figure 3: Inhibition of TLR signaling by endogenous proteins.

Similar content being viewed by others

References

  1. Takeda, K., Kaisho, T. & Akira, S. Toll-like receptors. Annu. Rev. Immunol. 21, 335–376 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Chamaillard, M., Girardin, S.E., Viala, J. & Philpott, D.J. Nods, Nalps and Naip: intracellular regulators of bacterial-induced inflammation. Cell. Microbiol. 5, 581–592 (2003).

    CAS  PubMed  Google Scholar 

  3. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    CAS  PubMed  Google Scholar 

  4. Brightbill, H.D. et al. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 285, 732–736 (1999).

    CAS  PubMed  Google Scholar 

  5. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Heckelsmiller, K. et al. Combined dendritic cell- and CpG oligonucleotide-based immune therapy cures large murine tumors that resist chemotherapy. Eur. J. Immunol. 32, 3235–3245 (2002).

    CAS  PubMed  Google Scholar 

  7. Gramzinski, R.A. et al. Interleukin-12- and γ interferon-dependent protection against malaria conferred by CpG oligodeoxynucleotide in mice. Infect. Immun. 69, 1643–1649 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zimmermann, S. et al. CpG oligodeoxynucleotides trigger protective and curative Th1 responses in lethal murine leishmaniasis. J. Immunol. 160, 3627–3630 (1998).

    CAS  PubMed  Google Scholar 

  9. Walker, P.S. et al. Immunostimulatory oligodeoxynucleotides promote protective immunity and provide systemic therapy for leishmaniasis via IL-12- and IFN-γ-dependent mechanisms. Proc. Natl. Acad. Sci. USA 96, 6970–6975 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Elkins, K.L., Rhinehart-Jones, T.R., Stibitz, S., Conover, J.S. & Klinman, D.M. Bacterial DNA containing CpG motifs stimulates lymphocyte-dependent protection of mice against lethal infection with intracellular bacteria. J. Immunol. 162, 2291–2298 (1999).

    CAS  PubMed  Google Scholar 

  11. Girardin, S.E. et al. Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300, 1584–1587 (2003).

    CAS  PubMed  Google Scholar 

  12. Chamaillard, M. et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat. Immunol. 4, 702–707 (2003).

    CAS  PubMed  Google Scholar 

  13. Girardin, S.E. et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 278, 8869–8872 (2003).

    CAS  PubMed  Google Scholar 

  14. Pauleau, A.L. & Murray, P.J. Role of nod2 in the response of macrophages to toll-like receptor agonists. Mol. Cell. Biol. 23, 7531–7539 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Rosenstiel, P. et al. TNF-α and IFN-γ regulate the expression of the NOD2 (CARD15) gene in human intestinal epithelial cells. Gastroenterology 124, 1001–1009 (2003).

    CAS  PubMed  Google Scholar 

  16. Hofmann, K., Bucher, P. & Tschopp, J. The CARD domain: a new apoptotic signalling motif. Trends Biochem. Sci. 22, 155–156 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Miceli-Richard, C. et al. CARD15 mutations in Blau syndrome. Nat. Genet. 29, 19–20 (2001).

    CAS  PubMed  Google Scholar 

  18. Hoffman, H.M., Mueller, J.L., Broide, D.H., Wanderer, A.A. & Kolodner, R.D. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat. Genet. 29, 301–305 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Maeda, S. et al. Nod2 mutation in Crohn's disease potentiates NF-κB activity and IL-1β processing. Science 307, 734–738 (2005).

    CAS  PubMed  Google Scholar 

  20. Hugot, J.P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411, 599–603 (2001).

    CAS  PubMed  Google Scholar 

  21. Beutler, B., Hoebe, K., Georgel, P., Tabeta, K. & Du, X. Genetic analysis of innate immunity: identification and function of the TIR adapter proteins. Adv. Exp. Med. Biol. 560, 29–39 (2005).

    CAS  PubMed  Google Scholar 

  22. Inohara, N. & Nunez, G. The NOD: a signaling module that regulates apoptosis and host defense against pathogens. Oncogene 20, 6473–6481 (2001).

    CAS  PubMed  Google Scholar 

  23. Suzuki, N., Suzuki, S. & Yeh, W.C. IRAK-4 as the central TIR signaling mediator in innate immunity. Trends Immunol. 23, 503–506 (2002).

    CAS  PubMed  Google Scholar 

  24. Wu, H. & Arron, J.R. TRAF6, a molecular bridge spanning adaptive immunity, innate immunity and osteoimmunology. Bioessays 25, 1096–1105 (2003).

    CAS  PubMed  Google Scholar 

  25. Dunne, A. & O'Neill, L.A. The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense. Sci. STKE 2003, 10.1126/stke.2003.171.re3.

  26. McCarthy, J.V., Ni, J. & Dixit, V.M. RIP2 is a novel NF-κB-activating and cell death-inducing kinase. J. Biol. Chem. 273, 16968–16975 (1998).

    CAS  PubMed  Google Scholar 

  27. Yoo, N.J. et al. Nod1, a CARD protein, enhances pro-interleukin-1β processing through the interaction with pro-caspase-1. Biochem. Biophys. Res. Commun. 299, 652–658 (2002).

    CAS  PubMed  Google Scholar 

  28. Loiarro, M. et al. Peptide-mediated interference of TIR domain dimerization in MyD88 inhibits interleukin-1-dependent activation of NF-κB. J. Biol. Chem. 280, 15809–15814 (2005).

    CAS  PubMed  Google Scholar 

  29. Arkin, M.R. & Wells, J.A. Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat. Rev. Drug Discov. 3, 301–317 (2004).

    CAS  PubMed  Google Scholar 

  30. Li, Q. & Verma, I.M. NF-κB regulation in the immune system. Nat. Rev. Immunol. 2, 725–734 (2002).

    CAS  PubMed  Google Scholar 

  31. Lawrence, T., Bebien, M., Liu, G.Y., Nizet, V. & Karin, M. IKKα limits macrophage NF-κB activation and contributes to the resolution of inflammation. Nature 434, 1138–1143 (2005).

    CAS  PubMed  Google Scholar 

  32. Wertz, I.E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430, 694–699 (2004).

    CAS  PubMed  Google Scholar 

  33. Chariot, A. et al. Association of the adaptor TANK with the I kappa B kinase (IKK) regulator NEMO connects IKK complexes with IKKε and TBK1 kinases. J. Biol. Chem. 277, 37029–37036 (2002).

    CAS  PubMed  Google Scholar 

  34. Karin, M., Yamamoto, Y. & Wang, Q.M. The IKK NF-κB system: a treasure trove for drug development. Nat. Rev. Drug Discov. 3, 17–26 (2004).

    CAS  PubMed  Google Scholar 

  35. Cobb, M.H. & Goldsmith, E.J. How MAP kinases are regulated. J. Biol. Chem. 270, 14843–14846 (1995).

    CAS  PubMed  Google Scholar 

  36. Ge, B. et al. TAB1β (transforming growth factor-β-activated protein kinase 1-binding protein 1β), a novel splicing variant of TAB1 that interacts with p38α but not TAK1. J. Biol. Chem. 278, 2286–2293 (2003).

    CAS  PubMed  Google Scholar 

  37. Ge, B. et al. MAPKK-independent activation of p38α mediated by TAB1-dependent autophosphorylation of p38α. Science 295, 1291–1294 (2002).

    CAS  PubMed  Google Scholar 

  38. Salvador, J.M. et al. Alternative p38 activation pathway mediated by T cell receptor-proximal tyrosine kinases. Nat. Immunol. 6, 390–395 (2005).

    CAS  PubMed  Google Scholar 

  39. Weston, C.R. & Davis, R.J. The Jnk signal transduction pathway. Curr. Opin. Genet. Dev. 12, 14–21 (2002).

    CAS  PubMed  Google Scholar 

  40. Manning, A.M. & Davis, R.J. Targeting Jnk for therapeutic benefit: from junk to gold? Nat. Rev. Drug Discov. 2, 554–565 (2003).

    CAS  PubMed  Google Scholar 

  41. Lee, J.C. et al. Inhibition of p38 MAP kinase as a therapeutic strategy. Immunopharmacology 47, 185–201 (2000).

    CAS  PubMed  Google Scholar 

  42. Zarubin, T. & Han, J. Activation and signaling of the p38 MAP kinase pathway. Cell Res. 15, 11–18 (2005).

    CAS  PubMed  Google Scholar 

  43. Clark, A.R., Dean, J.L. & Saklatvala, J. Post-transcriptional regulation of gene expression by mitogen-activated protein kinase p38. FEBS Lett. 546, 37–44 (2003).

    CAS  PubMed  Google Scholar 

  44. Doyle, S. et al. IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity 17, 251–263 (2002).

    CAS  PubMed  Google Scholar 

  45. Ojaniemi, M. et al. Phosphatidylinositol 3-kinase is involved in Toll-like receptor 4-mediated cytokine expression in mouse macrophages. Eur. J. Immunol. 33, 597–605 (2003).

    CAS  PubMed  Google Scholar 

  46. Latchman, D.S. Transcription factors as potential targets for therapeutic drugs. Curr. Pharm. Biotechnol. 1, 57–61 (2000).

    CAS  PubMed  Google Scholar 

  47. Stoecklin, G. et al. Functional cloning of BRF1, a regulator of ARE-dependent mRNA turnover. EMBO J. 21, 4709–4718 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Laroia, G., Cuesta, R., Brewer, G. & Schneider, R.J. Control of mRNA decay by heat shock-ubiquitin-proteasome pathway. Science 284, 499–502 (1999).

    CAS  PubMed  Google Scholar 

  49. Ma, W.J., Cheng, S., Campbell, C., Wright, A. & Furneaux, H. Cloning and characterization of HuR, a ubiquitously expressed Elav-like protein. J. Biol. Chem. 271, 8144–8151 (1996).

    CAS  PubMed  Google Scholar 

  50. Gueydan, C. et al. Identification of TIAR as a protein binding to the translational regulatory AU-rich element of tumor necrosis factor α mRNA. J. Biol. Chem. 274, 2322–2326 (1999).

    CAS  PubMed  Google Scholar 

  51. Carballo, E., Lai, W.S. & Blackshear, P.J. Feedback inhibition of macrophage tumor necrosis factor-α production by tristetraprolin. Science 281, 1001–1005 (1998).

    CAS  PubMed  Google Scholar 

  52. Peng, S.S., Chen, C.Y., Xu, N. & Shyu, A.B. RNA stabilization by the AU-rich element binding protein, HuR, an ELAV protein. EMBO J. 17, 3461–3470 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen, C.Y. et al. AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell 107, 451–464 (2001).

    CAS  PubMed  Google Scholar 

  54. Lykke-Andersen, J. & Wagner, E. Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1. Genes Dev. 19, 351–361 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Mahtani, K.R. et al. Mitogen-activated protein kinase p38 controls the expression and posttranslational modification of tristetraprolin, a regulator of tumor necrosis factor α mRNA stability. Mol. Cell. Biol. 21, 6461–6469 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Dean, J.L., Brook, M., Clark, A.R. & Saklatvala, J. p38 mitogen-activated protein kinase regulates cyclooxygenase-2 mRNA stability and transcription in lipopolysaccharide-treated human monocytes. J. Biol. Chem. 274, 264–269 (1999).

    CAS  PubMed  Google Scholar 

  57. Buxade, M. et al. The Mnks are novel components in the control of TNFα biosynthesis and phosphorylate and regulate hnRNP A1. Immunity 23, 177–189 (2005).

    CAS  PubMed  Google Scholar 

  58. Ming, X.F., Kaiser, M. & Moroni, C. c-jun N-terminal kinase is involved in AUUUA-mediated interleukin-3 mRNA turnover in mast cells. EMBO J. 17, 6039–6048 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Schmidlin, M. et al. The ARE-dependent mRNA-destabilizing activity of BRF1 is regulated by protein kinase B. EMBO J. 23, 4760–4769 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Monick, M.M. et al. Phosphatidylinositol 3-kinase activity negatively regulates stability of cyclooxygenase 2 mRNA. J. Biol. Chem. 277, 32992–33000 (2002).

    CAS  PubMed  Google Scholar 

  61. Kotlyarov, A., Neininger, A., Schubert, C. & Gaestel, M. MAPKAP kinase 2 is essential for LPS-induced TNF-α biosynthesis. Nat. Cell Biol. 1, 94–97 (1999).

    CAS  PubMed  Google Scholar 

  62. Kontoyiannis, D., Pasparakis, M., Pizarro, T.T., Cominelli, F. & Kollias, G. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 10, 387–398 (1999).

    CAS  PubMed  Google Scholar 

  63. Chrestensen, C.A. et al. MAPKAP kinase 2 phosphorylates tristetraprolin on in vivo sites including Ser178, a site required for 14–3-3 binding. J. Biol. Chem. 279, 10176–10184 (2004).

    CAS  PubMed  Google Scholar 

  64. Stoecklin, G. et al. MK2-induced tristetraprolin:14–3-3 complexes prevent stress granule association and ARE-mRNA decay. EMBO J. 23, 1313–1324 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhu, W. et al. Gene suppression by tristetraprolin and release by the p38 pathway. Am. J. Physiol. Lung Cell. Mol. Physiol. 281, L499–L508 (2001).

    CAS  PubMed  Google Scholar 

  66. Rousseau, S. et al. Inhibition of SAPK2a/p38 prevents hnRNP A0 phosphorylation by MAPKAP-K2 and its interaction with cytokine mRNAs. EMBO J. 21, 6505–6514 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Vasudevan, S. & Peltz, S.W. Regulated ARE-mediated mRNA decay in Saccharomyces cerevisiae. Mol. Cell 7, 1191–1200 (2001).

    CAS  PubMed  Google Scholar 

  68. Jing, Q. et al. Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 120, 623–634 (2005).

    CAS  PubMed  Google Scholar 

  69. Hammond, S.M., Boettcher, S., Caudy, A.A., Kobayashi, R. & Hannon, G.J. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293, 1146–1150 (2001).

    CAS  PubMed  Google Scholar 

  70. Caudy, A.A. et al. A micrococcal nuclease homologue in RNAi effector complexes. Nature 425, 411–414 (2003).

    CAS  PubMed  Google Scholar 

  71. Reddy, K.V. et al. Dexamethasone enhances LPS induction of tissue factor expression in human monocytic cells by increasing tissue factor mRNA stability. J. Leukoc. Biol. 76, 145–151 (2004).

    CAS  PubMed  Google Scholar 

  72. Ferrante, J.V. & Ferrante, A. Novel role of lipoxygenases in the inflammatory response: promotion of TNF mRNA decay by 15-hydroperoxyeicosatetraenoic acid in a monocytic cell line. J. Immunol. 174, 3169–3172 (2005).

    CAS  PubMed  Google Scholar 

  73. Liew, F.Y., Xu, D., Brint, E.K. & O'Neill, L.A. Negative regulation of toll-like receptor-mediated immune responses. Nat. Rev. Immunol. 5, 446–458 (2005).

    CAS  PubMed  Google Scholar 

  74. Chuang, T.H. & Ulevitch, R.J. Triad3A, an E3 ubiquitin-protein ligase regulating Toll-like receptors. Nat. Immunol. 5, 495–502 (2004).

    CAS  PubMed  Google Scholar 

  75. Cartney-Francis, N., Jin, W. & Wahl, S.M. Aberrant Toll receptor expression and endotoxin hypersensitivity in mice lacking a functional TGF-β1 signaling pathway. J. Immunol. 172, 3814–3821 (2004).

    Google Scholar 

  76. Divanovic, S. et al. Negative regulation of Toll-like receptor 4 signaling by the Toll-like receptor homolog RP105. Nat. Immunol. 6, 571–578 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Iwami, K.I. et al. Cutting edge: naturally occurring soluble form of mouse Toll-like receptor 4 inhibits lipopolysaccharide signaling. J. Immunol. 165, 6682–6686 (2000).

    CAS  PubMed  Google Scholar 

  78. Bergers, G., Reikerstorfer, A., Braselmann, S., Graninger, P. & Busslinger, M. Alternative promoter usage of the Fos-responsive gene Fit-1 generates mRNA isoforms coding for either secreted or membrane-bound proteins related to the IL-1 receptor. EMBO J. 13, 1176–1188 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Brint, E.K. et al. ST2 is an inhibitor of interleukin 1 receptor and Toll-like receptor 4 signaling and maintains endotoxin tolerance. Nat. Immunol. 5, 373–379 (2004).

    CAS  PubMed  Google Scholar 

  80. Kumar, S., Tzimas, M.N., Griswold, D.E. & Young, P.R. Expression of ST2, an interleukin-1 receptor homologue, is induced by proinflammatory stimuli. Biochem. Biophys. Res. Commun. 235, 474–478 (1997).

    CAS  PubMed  Google Scholar 

  81. Sweet, M.J. et al. A novel pathway regulating lipopolysaccharide-induced shock by ST2/T1 via inhibition of Toll-like receptor 4 expression. J. Immunol. 166, 6633–6639 (2001).

    CAS  PubMed  Google Scholar 

  82. Garlanda, C. et al. Intestinal inflammation in mice deficient in Tir8, an inhibitory member of the IL-1 receptor family. Proc. Natl. Acad. Sci. USA 101, 3522–3526 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Wald, D. et al. SIGIRR, a negative regulator of Toll-like receptor-interleukin 1 receptor signaling. Nat. Immunol. 4, 920–927 (2003).

    CAS  PubMed  Google Scholar 

  84. Wesche, H. et al. IRAK-M is a novel member of the Pelle/interleukin-1 receptor-associated kinase (IRAK) family. J. Biol. Chem. 274, 19403–19410 (1999).

    CAS  PubMed  Google Scholar 

  85. Janssens, S. & Beyaert, R. Functional diversity and regulation of different interleukin-1 receptor-associated kinase (IRAK) family members. Mol. Cell 11, 293–302 (2003).

    CAS  PubMed  Google Scholar 

  86. Burns, K. et al. Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J. Exp. Med. 197, 263–268 (2003).

    PubMed  PubMed Central  Google Scholar 

  87. Kobayashi, K. et al. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110, 191–202 (2002).

    CAS  PubMed  Google Scholar 

  88. Hardy, M.P. & O'Neill, L.A. The murine IRAK2 gene encodes four alternatively spliced isoforms, two of which are inhibitory. J. Biol. Chem. 279, 27699–27708 (2004).

    CAS  PubMed  Google Scholar 

  89. Janssens, S., Burns, K., Vercammen, E., Tschopp, J. & Beyaert, R. MyD88S, a splice variant of MyD88, differentially modulates NF-κB- and AP-1-dependent gene expression. FEBS Lett. 548, 103–107 (2003).

    CAS  PubMed  Google Scholar 

  90. Bluml, S. et al. Oxidized phospholipids negatively regulate dendritic cell maturation induced by TLRs and CD40. J. Immunol. 175, 501–508 (2005).

    PubMed  Google Scholar 

  91. Diehl, G.E. et al. TRAIL-R as a negative regulator of innate immune cell responses. Immunity 21, 877–889 (2004).

    CAS  PubMed  Google Scholar 

  92. Fukao, T. & Koyasu, S. PI3K and negative regulation of TLR signaling. Trends Immunol. 24, 358–363 (2003).

    CAS  PubMed  Google Scholar 

  93. Li, T., Hu, J. & Li, L. Characterization of Tollip protein upon lipopolysaccharide challenge. Mol. Immunol. 41, 85–92 (2004).

    CAS  PubMed  Google Scholar 

  94. Alexander, W.S. Suppressors of cytokine signalling (SOCS) in the immune system. Nat. Rev. Immunol. 2, 410–416 (2002).

    CAS  PubMed  Google Scholar 

  95. Baetz, A., Frey, M., Heeg, K. & Dalpke, A.H. Suppressor of cytokine signaling (SOCS) proteins indirectly regulate toll-like receptor signaling in innate immune cells. J. Biol. Chem. 279, 54708–54715 (2004).

    CAS  PubMed  Google Scholar 

  96. Boone, D.L. et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat. Immunol. 5, 1052–1060 (2004).

    CAS  PubMed  Google Scholar 

  97. Saitoh, T. et al. A20 is a negative regulator of IFN regulatory factor 3 signaling. J. Immunol. 174, 1507–1512 (2005).

    CAS  PubMed  Google Scholar 

  98. Schmidt-Weber, C.B. & Blaser, K. Regulation and role of transforming growth factor-β in immune tolerance induction and inflammation. Curr. Opin. Immunol. 16, 709–716 (2004).

    CAS  PubMed  Google Scholar 

  99. Asadullah, K., Sterry, W. & Volk, H.D. Interleukin-10 therapy–review of a new approach. Pharmacol. Rev. 55, 241–269 (2003).

    CAS  PubMed  Google Scholar 

  100. Genolet, R., Wahli, W. & Michalik, L. PPARs as drug targets to modulate inflammatory responses? Curr. Drug Targets Inflamm. Allergy 3, 361–375 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the National Institutes of Health (AI15136, GM28485, AI54523, GM37696, AI41637, AI54796 and GM67101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiahuai Han.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, J., Ulevitch, R. Limiting inflammatory responses during activation of innate immunity. Nat Immunol 6, 1198–1205 (2005). https://doi.org/10.1038/ni1274

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1274

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing