Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Helix-loop-helix proteins and lymphocyte development

Abstract

Helix-loop-helix (HLH) proteins are transcriptional regulators that control a wide variety of developmental pathways in both invertebrate and vertebrate organisms. Results obtained in the past decade have shown that HLH proteins also contribute to the development of lymphoid lineages. A subset of HLH proteins, the 'E proteins', seems to be particularly important for proper lymphoid development. Members of the E protein family include E12, E47, E2-2 and HEB. The E proteins contribute to B lineage– and T lineage–specific gene expression programs, regulate lymphocyte survival and cellular proliferation, activate the rearrangement of antigen receptor genes and control progression through critical developmental checkpoints. This review discusses HLH proteins in lymphocyte development and homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The function of E proteins in B cell maturation.
Figure 2: The function and regulation of E proteins in T lineage development.
Figure 3: Regulation of E protein activity by Erk MAP kinase and signaling mediated by BMP and/or TGF-β.

Similar content being viewed by others

References

  1. Lazorchak, A., Jones, M.E. & Zhuang, Y. New insights into E-protein function in lymphocyte development. Trends Immunol. 26, 334–338 (2005).

    CAS  PubMed  Google Scholar 

  2. Sun, X.H. Multitasking of helix-loop-helix proteins in lymphopoiesis. Adv. Immunol. 84, 43–77 (2004).

    CAS  PubMed  Google Scholar 

  3. Bain, G., Gruenwald, S. & Murre, C. E2A and E2–2 are subunits of B-cell-specific E2-box DNA-binding proteins. Mol. Cell. Biol. 13, 3522–3529 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Sloan, S.R., Shen, C.P., McCarrick-Walmsley, R. & Kadesch, T. Phosphorylation of E47 as a potential determinant of B-cell-specific activity. Mol. Cell. Biol. 16, 6900–6908 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Shen, C.P. & Kadesch, T. B-cell-specific DNA binding by an E47 homodimer. Mol. Cell. Biol. 15, 4518–4524 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Sawada, S. & Littman, D.R. A heterodimer of HEB and an E12-related protein interacts with the CD4 enhancer and regulates its activity in T-cell lines. Mol. Cell. Biol. 13, 5620–5628 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Murre, C., McCaw, P.S. & Baltimore, D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56, 777–783 (1989).

    CAS  PubMed  Google Scholar 

  8. Aronheim, A., Shiran, R., Rosen, A. & Walker, M.D. The E2A gene product contains two separable and functionally distinct transcription activation domains. Proc. Natl. Acad. Sci. USA 90, 8063–8067 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Quong, M.W., Massari, M.E., Zwart, R. & Murre, C. A new transcriptional-activation motif restricted to class of helix-loop-helix proteins is functionally conserved in both yeast and mammalian cells. Mol. Cell. Biol. 13, 792–800 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Massari, M.E., Jennings, P.A. & Murre, C. The AD1 transactivation domain of E2A contains a highly conserved helix which is required for its activity in both Saccharomyces cerevisiae and mammalian cells. Mol. Cell. Biol. 16, 121–129 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sun, X.H. & Baltimore, D. An inhibitory domain of the E12 transcription factor prevents DNA binding in E12 homodimers but not in E12 heterodimers. Cell 64, 459–470 (1991).

    CAS  PubMed  Google Scholar 

  12. Massari, M.E. & Murre, C. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol. Cell. Biol. 20, 429–440 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Corneliussen, B., Thornell, A., Hallberg, B. & Grundstrom, T. Helix-loop-helix transcriptional activators bind to a sequence in glucocorticoid response elements of retrovirus enhancers. J. Virol. 65, 6084–6093 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Rothenberg, E.V. (2002). T-lineage specification and commitment: a gene regulation perspective. Sem. Immunol. 14, 431–440 (2002).

    CAS  Google Scholar 

  15. Benezra, R., Davis, R.L., Lockshon, D., Turner, D.L. & Weintraub, H. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 61, 49–59 (1990).

    CAS  PubMed  Google Scholar 

  16. Norton, J.D. Id helix-loop-helix proteins in cell growth, differentiation and tumorigenesis. J. Cell Sci. 113, 3897–3905 (2000).

    CAS  PubMed  Google Scholar 

  17. Yan, W. et al. High incidence of T-cell tumors in E2A-null mice and E2A/Id1 double-knockout mice. Mol. Cell. Biol. 17, 7317–7327 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Rivera, R.R., Johns, C.P., Quan, J., Johnson, R.S. & Murre, C. Thymocyte selection is regulated by the helix-loop-helix inhibitor protein, Id3. Immunity 12, 17–26 (2000).

    CAS  PubMed  Google Scholar 

  19. Yokota, Y. et al. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 397, 702–706 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Pan, L., Sato, S., Frederick, J.P., Sun, X.H. & Zhuang, Y. Impaired immune responses and B-cell proliferation in mice lacking the Id3 gene. Mol. Cell. Biol. 19, 5969–5980 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ikawa, T., Kawamoto, H., Wright, L.Y.T. & Murre, C. Long-term cultured E2A-deficient hematopoietic progenitor cells are pluripotent. Immunity 3, 349–360 (2004).

    Google Scholar 

  22. Massari, M.E. et al. A conserved motif present in a class of helix-loop-helix proteins activates transcription by direct recruitment of the SAGA complex. Mol. Cell 4, 63–73 (1999).

    CAS  PubMed  Google Scholar 

  23. Qiu, Y., Sharma, A. & Stein, R. p300 mediates transcriptional stimulation by the basic helix-loop-helix activators of the insulin gene. Mol. Cell. Biol. 18, 2957–2964 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bradney, C. et al. Regulation of E2A activities by histone acetyltransferases in B lymphocyte development. J. Biol. Chem. 278, 2370–2376 (2002).

    PubMed  Google Scholar 

  25. Zhang, J., Kalkum, M., Yamamura, S., Chait, B.T. & Roeder, R.G. E protein silencing by the leukemogenic AML1-ETO fusion protein. Science 305, 1286–1289 (2004).

    CAS  PubMed  Google Scholar 

  26. Kondo, M. et al. Biology of hematopoietic stem cells and progenitors: Implications for clinical application. Annu. Rev. Immunol. 21, 759–806 (2003).

    CAS  PubMed  Google Scholar 

  27. Allman, D. et al. Thymopoiesis independent of common lymphoid progenitors. Nat. Immunol. 4, 168–174 (2003).

    CAS  PubMed  Google Scholar 

  28. Schwartz, B.A. & Bhandoola, A. Circulating hematopoietic progenitors with T lineage potential. Nat. Immunol. 5, 953–960 (2004).

    Google Scholar 

  29. Radtke, F. et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10, 547–558 (1999).

    CAS  PubMed  Google Scholar 

  30. Pui, J.C. et al. Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity 11, 299–308 (1999).

    CAS  PubMed  Google Scholar 

  31. Rothenberg, E.V. & Taghon, T. Molecular genetics of T cell development. Annu. Rev. Immunol. 23, 601–649 (2005).

    CAS  PubMed  Google Scholar 

  32. Bain, G. et al. E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 79, 885–892 (1994).

    CAS  PubMed  Google Scholar 

  33. Zhuang, Y., Soriano, P. & Weintraub, H. The helix-loop-helix gene E2A is required for B cell formation. Cell 79, 875–884 (1994).

    CAS  PubMed  Google Scholar 

  34. Sun, X.H. Constitutive expression of the Id1 gene impairs mouse B cell development. Cell 79, 893–900 (1994).

    CAS  PubMed  Google Scholar 

  35. Heemskerk, M.H. et al. Inhibition of T cell and promotion of natural killer cell development by the dominant negative helix-loop-helix factor Id3. J. Exp. Med. 186, 1597–1602 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bain, G. et al. E2A deficiency leads to abnormalities in T-cell development and to rapid development of T-cell lymphomas. Mol. Cell. Biol. 17, 4782–4791 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Barndt, R.J., Dai, M. & Zhuang, Y. Functions of E2A/HEB heterodimers in T-cell development revealed by a dominant negative mutation of HEB. Mol. Cell. Biol. 20, 6677–6685 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Spits, H., Couwenberg, F., Bakker, A.Q., Weijer, K. & Uittenbogaart, C.H. Id2 and Id3 inhibit development of CD34+ stem cells into predendritic cell (pre-DC)2 but not into pre-DC1. Evidence for a lymphoid origin of pre-DC2. J. Exp. Med. 192, 1775–1784 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhuang, Y., Jackson, A., Pan, L., Shen, K. & Dai, M. Regulation of E2A gene expression in B lymphocyte development. Mol. Immunol. 40, 1165–1170 (2004).

    CAS  PubMed  Google Scholar 

  40. Shivdasani, R.A., Mayer, E.L. & Orkin, S.H. Absence of blood formation in mice lacking the T-cell leukemia protein tal-1/SCL. Nature 373, 432–443 (1995).

    CAS  PubMed  Google Scholar 

  41. Ying, Q., Nichols, J., Chambers, I. & Smith, A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115, 281–292 (2003).

    CAS  PubMed  Google Scholar 

  42. Igarashi, H., Gregory, S., Yokota, T., Sakaguchi, N. & Kincade, P.W. Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow. Immunity 17, 117–130 (2002).

    CAS  PubMed  Google Scholar 

  43. Singh, H., Medina, K.L. & Pongubala, J.M.R. Contingent gene regulatory networks and B cell fate specification. Proc. Natl. Acad. Sci. USA 102, 4945–4953 (2005).

    Google Scholar 

  44. Busslinger, M. Transcriptional control of early B cell development. Annu. Rev. Immunol. 22, 55–79 (2004).

    CAS  PubMed  Google Scholar 

  45. Jaleco, A.C. et al. Genetic modification of human B cell development: B cell development is inhibited by the dominant-negative helix-loop-helix factor Id3. Blood 94, 2637–2646 (1999).

    CAS  PubMed  Google Scholar 

  46. Bain, G. et al. Both E12 and E47 allow commitment to the B cell lineage. Immunity 6, 145–154 (1997).

    CAS  PubMed  Google Scholar 

  47. Zhuang, Y., Cheng, P. & Weintraub, H. B lymphocyte development is regulated by the combined dosage of three helix-loop-helix genes, E2A, E2–2 and HEB. Mol. Cell. Biol. 16, 2898–2905 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hagman, J., Belanger, C., Travis, A., Turck, C.W. & Grosschedl, R. Cloning and characterization of early B-cell factor, a regulator of lymphocyte specific gene expression. Genes Dev. 5, 760–773 (1993).

    Google Scholar 

  49. Lin, H. & Grosschedl, R. Failure of B-cell differentiation in mice lacking the transcription factor EBF. Nature 376, 263–267 (1995).

    CAS  PubMed  Google Scholar 

  50. Urbanek, P., Wang, Z., Fetka, I., Wagner, E.F. & Busslinger, M. Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell 79, 901–912 (1994).

    CAS  PubMed  Google Scholar 

  51. Hesslein, D.G. et al. Pax5 is required for recombination of transcribed, acetylated, 5′ IgH V gene segments. Genes Dev. 1, 37–42 (2003).

    Google Scholar 

  52. Seet, C.S., Brumbaugh, R.L. & Kee, B.L. Early B cell factor promotes B lymphopoiesis with reduced interleukin 7 responsiveness in the absence of E2A. J. Exp. Med. 199, 1689–1700 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kee, B.L. & Murre, C. Induction of early B cell factor (EBF) and multiple B lineage genes by the basic helix-loop-helix transcription factor E12. J. Exp. Med. 188, 699–713 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. O'Riordan, M. & Grosschedl, R. Coordinate regulation of B cell differentiation by the transcription factors EBF and E2A. Immunity 11, 21–31 (1999).

    CAS  PubMed  Google Scholar 

  55. Nutt, S.L., Heavey, B., Rolink, A.G. & Busslinger, M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 401, 556–562 (1999).

    CAS  PubMed  Google Scholar 

  56. Maier, H. et al. Early B cell factor cooperates with Runx1 and mediates epigenetic changes associated with mb-1 transcription. Nat. Immunol. 5, 1069–1077 (2004).

    CAS  PubMed  Google Scholar 

  57. Quong, M.W. et al. Receptor editing and marginal zone B cell development are regulated by the helix-loop-helix protein, E2A. J. Exp. Med. 199, 1113–1120 (2004).

    Google Scholar 

  58. Greenbaum, S., Lazorchak, A.S. & Zhuang, Y. Differential functions for the transcription factor E2A in positive and negative regulation in pre-B lymphocytes. J. Biol. Chem. 279, 45028–45035 (2004).

    CAS  PubMed  Google Scholar 

  59. Schebesta, M., Pfeffer, P.L. & Busslinger, M. Control of pre-BCR signaling by Pax5-dependent activation of the BLNK gene. Immunity 17, 473–485 (2002).

    CAS  PubMed  Google Scholar 

  60. Herblot, S., Aplan, P.D. & Hoang, T. Gradient of E2A activity in B cell development. Mol. Cell. Biol. 22, 886–900 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Hsu, L. et al. A conserved transcriptional enhancer regulates RAG gene expression in developing B cells. Immunity 19, 105–117 (2003).

    CAS  PubMed  Google Scholar 

  62. Romanow, W.J. et al. E2A and EBF act in synergy with the V(D)J recombinase to generate a diverse immunoglobulin repertoire in nonlymphoid cells. Mol. Cell 5, 343–353 (2000).

    CAS  PubMed  Google Scholar 

  63. Inlay, M.A., Tian, H., Lin, T. & Xu, Y. Important roles for E protein binding sites within the immunoglobulin κ chain intronic enhancer in activating VJk rearrangement. J. Exp. Med. 9, 1205–1211 (2004).

    Google Scholar 

  64. Goebel, P. et al. Localized gene-specific induction of accessibility to V(D)J recombination induced by E2A and EBF in non lymphoid cells. J. Exp. Med. 194, 645–656 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Bain, G. Romanow, W.J., Albers, K. Havran, W.L. & Murre, C. Positive and negative regulation of V(D)J recombination by the E2A proteins. J. Exp. Med. 189, 289–300 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Bergman, Y. & Cedar, H. A stepwise epigenetic process controls immunoglobulin allelic exclusion. Nat. Rev. Immunol. 4, 753–761 (2004).

    CAS  PubMed  Google Scholar 

  67. Guinamard, R., Okigaki, M., Schlessinger, J. & Ravetch, J.V. J.V. Absence of marginal zone B cells in Pyk-2-deficient mice defines their role in the humoral response. Nat. Immunol. 1, 31–36 (2000).

    CAS  PubMed  Google Scholar 

  68. Tanigaki, K. et al. Notch-RBP-J signaling is involved in cell fate determination of marginal zone B cells. Nat. Immunol. 3, 443–450 (2002).

    CAS  PubMed  Google Scholar 

  69. Quong, M.W., Harris, D.P., Swain, S.L. & Murre, C. E2A activity is induced during B-cell activation to promote immunoglobulin class switch recombination. EMBO J. 18, 6307–6318 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sayegh, C.E., Quong, M.E., Agata, Y. & Murre, C. E-proteins directly regulate expression of activation-induced deaminase in mature B cells. Nat. Immunol. 4, 586–593 (2003).

    CAS  PubMed  Google Scholar 

  71. Michael, N. et al. The E box motif CAGGTG enhances somatic hypermutation without enhancing transcription. Immunity 19, 235–242 (2003).

    CAS  PubMed  Google Scholar 

  72. Goldfarb, A.N., Flores, J.P. & Lewandowska, K. Involvement of the E2A basic helix-loop-helix protein in immunoglobulin heavy chain class switching. Mol. Immunol. 33, 947–956 (1996).

    CAS  PubMed  Google Scholar 

  73. Roberts, V.J., Steenbergen, R. & Murre, C. Localization of E2A mRNA expression in developing and adult rat tissues. Proc. Natl. Acad. Sci. USA 90, 7583–7587 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Gonda, H. et al. The balance between Pax5 and Id2 activities is the key to AID expression. J. Exp. Med. 198, 1427–1437 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Ikawa, T., Fujimoto, S., Kawamoto, H., Katsura, Y. & Yokota, Y. Commitment to natural killer cells requires the helix-loop-helix protein, Id2. Proc. Natl. Acad. Sci. USA 98, 5164–5169 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Hacker, C. et al. Transcription profiling identifies Id2 function in dendritic cell development. Nat. Immunol. 4, 380–386 (2003).

    CAS  PubMed  Google Scholar 

  77. Engel, I., Johns, C., Bain, G., Rivera, R.R. & Murre, C. Early thymocyte development is regulated by modulation of E2A protein activity. J. Exp. Med. 194, 733–745 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Herblot, S. et al. SCL and LMO1 alter thymocyte differentiation: inhibition of E2A-HEB function and pre-Tα chain expression. Nat. Immunol. 1, 138–144 (2000).

    CAS  PubMed  Google Scholar 

  79. Schlissel, M., Voronova, A. & Baltimore, D. Helix-loop-helix transcription factor E47 activates germ-line immunoglobulin heavy-chain gene transcription and rearrangement in a pre-T-cell line. Genes Dev. 5, 1367–1376 (1991).

    CAS  PubMed  Google Scholar 

  80. Engel, I. & Murre, C. E2A proteins enforce a proliferation checkpoint in developing thymocytes. EMBO J. 23, 202–211 (2004).

    CAS  PubMed  Google Scholar 

  81. Bain, G., Quong, M.W., Soloff, R.S., Hedrick, S.M. & Murre, C. Thymocyte maturation is regulated by the activity of the helix-loop-helix protein, E47. J. Exp. Med. 190, 1605–1616 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Bain, G. et al. Regulation of the helix-loop-helix proteins, E2A and Id3, by the Ras-ERK MAPK cascade. Nat. Immunol. 2, 165–171 (2001).

    CAS  PubMed  Google Scholar 

  83. Costello, P.S., Nicolas, R.H., Watanabe, Y., Rosewell, I. & Treisman, R. Ternary complex factor SAP-1 is required for Erk-mediated thymocyte positive selection. Nat. Immunol. 5, 289–298 (2004).

    CAS  PubMed  Google Scholar 

  84. Bettini, M., Xi, H., Milbrandt, J. & Kersh, G.J. Thymocyte development in early growth response gene 1-deficient mice. J. Immunol. 169, 1713–1720 (2002).

    CAS  PubMed  Google Scholar 

  85. Kee, B.L., Rivera, R.R. & Murre, C. Id3 inhibits B lymphocyte progenitor growth and survival in response to TGF-β. Nat. Immunol. 2, 242–247 (2001).

    CAS  PubMed  Google Scholar 

  86. Hollnagel, A., Oehlmann, V., Heymeyer, J., Ruther, U. & Nordheim, A. Id genes are direct targets of bone morphogenetic protein induction in embryonic stem cells. J. Biol. Chem. 274, 19838–19845 (1999).

    CAS  PubMed  Google Scholar 

  87. Frasca, D., Nguyen, D., Riley, R.L. & Blomberg, B.B. Decreased E12 and/or E47 transcription factor activity in the bone marrow as well as in the spleen of aged mice. J. Immunol. 170, 719–726 (2003).

    CAS  PubMed  Google Scholar 

  88. Van der Put, E., Frasca, D., King, A.M., Blomberg, B.B. & Riley, R.L. Decreased E47 in senescent B cell precursors is stage-specific and regulated posttranslationally by protein turn-over. J. Immunol. 173, 818–827 (2004).

    CAS  PubMed  Google Scholar 

  89. Li, H., Dai, M. & Zhuang, Y.A. T cell intrinsic role in a mouse model for primary Sjogren's syndrome. Immunity 21, 551–560 (2004).

    CAS  PubMed  Google Scholar 

  90. Taghon, T.N., David, E., Zuniga-Pflucker, J.C. & Rothenberg, E.V. Delayed, asynchronous, and reversible T-lineage specification induced by Notch/Delta signaling. Genes Dev. 19, 965–978 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Bailey, A.M. & Posakony, J.W. Suppressor hairless directly activates transcription of Enhancer of split complex genes in response to Notch receptor activity. Genes Dev. 9, 2609–2622 (1995).

    CAS  PubMed  Google Scholar 

  92. Murre, C. et al. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58, 537–544 (1989).

    CAS  PubMed  Google Scholar 

  93. Ordentlich, P. et al. Notch inhibition of E47 supports the existence of a novel signaling pathway. Mol. Cell. Biol. 18, 2230–2239 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Nie, L., Xu, M., Vladimirova, A. & Sun, X.H. Notch-induced E2A ubiquitination and degradation are controlled by MAP kinase activities. EMBO J. 22, 5780–5792 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Huang, Z., Nie, L., Xu, M. & Sun, X.H. Notch-induced E2A degradation requires CHIP and Hsc70 as novel facilitators of ubiquitination. Mol. Cell. Biol. 24, 8951–8962 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Engel, I. & Murre, C. Ectopic expression of E47 or E12 promotes the death of E2A-deficient lymphomas. Proc. Natl. Acad. Sci. USA 96, 996–1001 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kee, B.L., Bain, G. & Murre, C. Il-7Rα and E47: independent pathways required for development of multipotent lymphoid progenitors. EMBO J. 21, 103–113 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Kim, D., Peng, X.C. & Sun, X.H. Massive apoptosis of thymocytes in T-cell-deficient Id1 transgenic mice. Mol. Cell. Biol. 19, 8240–8253 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhao, F., Vilardi, A., Neely, R.J. & Choi, J.K. Promotion of cell cycle progression by basic helix–loop–helix E2A. Mol. Cell. Biol. 21, 6346–6357 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Peverali, F. et al. Regulation of G1 progression by E2A and Id helix–loop–helix proteins. EMBO J. 13, 4291–4301 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Sicinska, E. et al. Requirements for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell 4, 451–456 (2003).

    CAS  PubMed  Google Scholar 

  102. Morrow, M.A., Mayer, E.W., Perez, C.A., Adlam, M. & Siu, G. Overexpression of the helix-loop-helix protein Id2 blocks T cell development at multiple stages. Mol. Immunol. 36, 491–503 (1999).

    CAS  PubMed  Google Scholar 

  103. Park, S.T., Nolan, G.P. & Sun, X.H. Growth inhibition and apoptosis due to restoration of E2A activity in T cell acute lymphoblastic leukemia cells. J. Exp. Med. 189, 501–508 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Engel, I. & Murre, C. 1999. Transcription factors in hematopoiesis. Curr. Opin. Genet. Dev. 9, 575–579 (1999).

    CAS  PubMed  Google Scholar 

  105. O'Neil, J., Shank, J., Cusson, N., Murre, C. & Kelliher, M. 2004. TAL1/SCL induces leukemia by inhibiting transcriptional activity of E47/HEB. Cancer Cell 5, 587–597 (2004).

    CAS  PubMed  Google Scholar 

  106. Aspland, S.E., Bendall, H.H. & Murre, C. The role of E2A/Pbx-1 in leukemogenesis. Oncogene 20, 5708–5717 (2001).

    CAS  PubMed  Google Scholar 

  107. Look, A.T. E2A-HLF chimeric transcription factors in pro-B cell acute lymphoblastoid leukemia. Curr. Top. Microbiol. Immunol. 220, 45–53 (1997).

    CAS  PubMed  Google Scholar 

  108. Asp, J., Thornemo, M., Inerot, S. & Lindahl, A. The helix-loop-helix transcription factors Id1 and Id3 have a functional role in control of cell division in human normal and neoplastic chondrocytes. FEBS Lett. 438, 85–90 (1998).

    CAS  PubMed  Google Scholar 

  109. Nishimori, H. et al. The Id2 gene is a novel target of transcriptional activation by ES-ETS fusion proteins in Ewing family tumors. Oncogene 21, 8302–8309 (2002).

    CAS  PubMed  Google Scholar 

  110. Rockman, S.P. et al. Id2 is a target of the β-catenin/T cell factor pathway in colon carcinoma. J. Biol. Chem. 276, 45113–45119 (2001).

    CAS  PubMed  Google Scholar 

  111. Perk, J., Iavarone, A. & Benezra, R. Id family of helix-loop-helix proteins in cancer. Nat. Rev. Cancer 5, 603–614 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank A. Goldrath and members of my laboratory for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murre, C. Helix-loop-helix proteins and lymphocyte development. Nat Immunol 6, 1079–1086 (2005). https://doi.org/10.1038/ni1260

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1260

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing