Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemokine receptor CCR7 required for T lymphocyte exit from peripheral tissues

Abstract

Lymphocytes travel throughout the body to carry out immune surveillance and participate in inflammatory reactions. Their path takes them from blood through tissues into lymph and back to blood. Molecules that control lymphocyte recruitment into extralymphoid tissues are well characterized, but exit is assumed to be random. Here, we showed that lymphocyte emigration from the skin was regulated and was sensitive to pertussis toxin. CD4+ lymphocytes emigrated more efficiently than CD8+ or B lymphocytes. T lymphocytes in the afferent lymph expressed functional chemokine receptor CCR7, and CCR7 was required for T lymphocyte exit from the skin. The regulated expression of CCR7 by tissue T lymphocytes may control their exit, acting with recruitment mechanisms to regulate lymphocyte transit and accumulation during immune surveillance and inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tissue exit is nonrandom.
Figure 2: Tissue exit involves Gαi protein–coupled receptor signaling.
Figure 3: T cells require expression of CCR7 to exit the skin and reach the draining lymph node.
Figure 4: Transduction of CCR7 rescues Ccr7−/− CD4+ T cell exit from the skin and migration to the draining lymph node.
Figure 5: Ovine T cells in the afferent lymph express functional CCR7.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Gowans, J.L. & Knight, E.J. The route of recirculation of lymphocytes in the rat. Proc. R. Soc. Lond. Ser. B. Biol. 159, 257–282 (1964).

    Article  CAS  Google Scholar 

  2. Gowans, J.L. The recirculation of lymphocytes from blood to lymph in the rat. J. Physiol. (Lond.) 146, 54–69 (1959).

    Article  CAS  Google Scholar 

  3. Mackay, C.R., Marston, W.L. & Dudler, L. Naive and memory T cells show distinct pathways of lymphocyte recirculation. J. Exp. Med. 171, 801–817 (1990).

    Article  CAS  Google Scholar 

  4. Campbell, D.J., Debes, G.F., Johnston, B., Wilson, E. & Butcher, E.C. Targeting T cell responses by selective chemokine receptor expression. Semin. Immunol. 15, 277–286 (2003).

    Article  CAS  Google Scholar 

  5. Olszewski, W.L., Grzelak, I., Ziolkowska, A. & Engeset, A. Immune cell traffic from blood through the normal human skin to lymphatics. Clin. Dermatol. 13, 473–483 (1995).

    Article  CAS  Google Scholar 

  6. Olszewski, W.L. The lymphatic system in body homeostasis: physiological conditions. Lymphat. Res. Biol. 1, 11–21 (2003).

    Article  Google Scholar 

  7. Klonowski, K.D. et al. Dynamics of blood-borne CD8 memory T cell migration in vivo. Immunity 20, 551–562 (2004).

    Article  CAS  Google Scholar 

  8. Issekutz, T.B., Chin, W. & Hay, J.B. The characterization of lymphocytes migrating through chronically inflamed tissues. Immunology 46, 59–66 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hall, J.G. & Morris, B. The origin of the cells in the efferent lymph from a single lymph node. J. Exp. Med. 121, 901–910 (1965).

    Article  CAS  Google Scholar 

  10. Mackay, C.R., Kimpton, W.G., Brandon, M.R. & Cahill, R.N. Lymphocyte subsets show marked differences in their distribution between blood and the afferent and efferent lymph of peripheral lymph nodes. J. Exp. Med. 167, 1755–1765 (1988).

    Article  CAS  Google Scholar 

  11. Young, A.J. The physiology of lymphocyte migration through the single lymph node in vivo. Semin. Immunol. 11, 73–83 (1999).

    Article  CAS  Google Scholar 

  12. Seabrook, T. et al. The traffic of resting lymphocytes through delayed hypersensitivity and chronic inflammatory lesions: a dynamic equilibrium. Semin. Immunol. 11, 115–123 (1999).

    Article  CAS  Google Scholar 

  13. Butcher, E.C. & Picker, L.J. Lymphocyte homing and homeostasis. Science 272, 60–66 (1996).

    Article  CAS  Google Scholar 

  14. Mandala, S. et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296, 346–349 (2002).

    Article  CAS  Google Scholar 

  15. Matloubian, M. et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427, 355–360 (2004).

    Article  CAS  Google Scholar 

  16. Förster, R. et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99, 23–33 (1999).

    Article  Google Scholar 

  17. Unsoeld, H., Krautwald, S., Voehringer, D., Kunzendorf, U. & Pircher, H. CCR7+ and CCR7 memory T cells do not differ in immediate effector cell function. J. Immunol. 169, 638–641 (2002).

    Article  CAS  Google Scholar 

  18. Sallusto, F., Lenig, D., Förster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    Article  CAS  Google Scholar 

  19. Campbell, J.J. et al. CCR7 expression and memory T cell diversity in humans. J. Immunol. 166, 877–884 (2001).

    Article  CAS  Google Scholar 

  20. Salmi, M., Koskinen, K., Henttinen, T., Elima, K. & Jalkanen, S. CLEVER-1 mediates lymphocyte transmigration through vascular and lymphatic endothelium. Blood 104, 3849–3857 (2004).

    Article  CAS  Google Scholar 

  21. Abernethy, N.J., Hay, J.B., Kimpton, W.G., Washington, E.A. & Cahill, R.N. Non-random recirculation of small, CD4+ and CD8+ T lymphocytes in sheep: evidence for lymphocyte subset-specific lymphocyte-endothelial cell recognition. Int. Immunol. 2, 231–238 (1990).

    Article  CAS  Google Scholar 

  22. Abernethy, N.J., Hay, J.B., Kimpton, W.G., Washington, E. & Cahill, R.N. Lymphocyte subset-specific and tissue-specific lymphocyte-endothelial cell recognition mechanisms independently direct the recirculation of lymphocytes from blood to lymph in sheep. Immunology 72, 239–245 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sallusto, F., Geginat, J. & Lanzavecchia, A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 22, 745–763 (2004).

    Article  CAS  Google Scholar 

  24. Kim, C.H. et al. Rules of chemokine receptor association with T cell polarization in vivo. J. Clin. Invest. 108, 1331–1339 (2001).

    Article  CAS  Google Scholar 

  25. Debes, G.F., Höpken, U.E. & Hamann, A. In vivo differentiated cytokine-producing CD4+ T cells express functional CCR7. J. Immunol. 168, 5441–5447 (2002).

    Article  CAS  Google Scholar 

  26. Debes, G.F. et al. CC chemokine receptor 7 expression by effector/memory CD4+ T cells depends on antigen specificity and tissue localization during influenza A virus infection. J. Virol. 78, 7528–7535 (2004).

    Article  CAS  Google Scholar 

  27. Gunn, M.D. et al. A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. Proc. Natl. Acad. Sci. USA 95, 258–263 (1998).

    Article  CAS  Google Scholar 

  28. Saeki, H., Moore, A.M., Brown, M.J. & Hwang, S.T. Secondary lymphoid-tissue chemokine (SLC) and CC chemokine receptor 7 (CCR7) participate in the emigration pathway of mature dendritic cells from the skin to regional lymph nodes. J. Immunol. 162, 2472–2475 (1999).

    CAS  Google Scholar 

  29. Nakano, H. & Gunn, M.D. Gene duplications at the chemokine locus on mouse chromosome 4: multiple strain-specific haplotypes and the deletion of secondary lymphoid-organ chemokine and EBI-1 ligand chemokine genes in the plt mutation. J. Immunol. 166, 361–369 (2001).

    Article  CAS  Google Scholar 

  30. Gunn, M.D. et al. Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J. Exp. Med. 189, 451–460 (1999).

    Article  CAS  Google Scholar 

  31. Ohl, L. et al. CCR7 governs skin dendritic cell migration under Inflammatory and steady-state conditions. Immunity 21, 279–288 (2004).

    Article  CAS  Google Scholar 

  32. Martin-Fontecha, A. et al. Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J. Exp. Med. 198, 615–621 (2003).

    Article  CAS  Google Scholar 

  33. Eberhard, Y., Ortiz, S., Ruiz Lascano, A., Kuznitzky, R. & Serra, H.M. Up-regulation of the chemokine CCL21 in the skin of subjects exposed to irritants. BMC Immunol. 5, 7 (2004).

    Article  Google Scholar 

  34. Stein, J.V. et al. The CC chemokine thymus-derived chemotactic agent 4 (TCA-4, secondary lymphoid tissue chemokine, 6Ckine, exodus-2) triggers lymphocyte function-associated antigen 1-mediated arrest of rolling T lymphocytes in peripheral lymph node high endothelial venules. J. Exp. Med. 191, 61–76 (2000).

    Article  CAS  Google Scholar 

  35. Warnock, R.A. et al. The role of chemokines in the microenvironmental control of T versus B cell arrest in Peyer's patch high endothelial venules. J. Exp. Med. 191, 77–88 (2000).

    Article  CAS  Google Scholar 

  36. Arnold, C.N., Butcher, E.C. & Campbell, D.J. Antigen-specific lymphocyte sequestration in lymphoid organs: lack of essential roles for αL and α4 integrin-dependent adhesion or Gαi protein-coupled receptor signaling. J. Immunol. 173, 866–873 (2004).

    Article  CAS  Google Scholar 

  37. Reinhardt, R.L., Bullard, D.C., Weaver, C.T. & Jenkins, M.K. Preferential accumulation of antigen-specific effector CD4 T cells at an antigen injection site involves CD62E-dependent migration but not local proliferation. J. Exp. Med. 197, 751–762 (2003).

    Article  CAS  Google Scholar 

  38. Young, A.J., Hein, W.R. & Hay, J.B. in Manual of Immunological Methods: the Comprehensive Source Book of Techniques (ed. Levkovits, I.) 2039–2059 (Academic Press, San Diego, 1997).

    Google Scholar 

  39. Vollmerhaus, B. in Lehrbuch der Anatomie der Haustiere III (eds Nickel, R., Schummer, A. & Seiferle, E.) 276–450 (Paul Parey, Berlin and Hamburg, 1984).

    Google Scholar 

  40. Hawley, R.G., Lieu, F.H., Fong, A.Z. & Hawley, T.S. Versatile retroviral vectors for potential use in gene therapy. Gene Ther. 1, 136–138 (1994).

    CAS  PubMed  Google Scholar 

  41. Pear, W.S., Nolan, G.P., Scott, M.L. & Baltimore, D. Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90, 8392–8396 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Campbell (University of Washington) for comments on the manuscript, and M. Zasio for sheep blood. Supported by the National Institutes of Health, the Department of Veterans Affairs (E.C.B.), the FACS Core of the Stanford Digestive Disease Center (National Institutes of Health P30 DK56339), Howard Hughes Medical Institute (C.N.A.), the Arthritis Foundation (G.F.D.) and Deutsche Forschungsgemeinschaft (G.F.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gudrun F Debes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Debes, G., Arnold, C., Young, A. et al. Chemokine receptor CCR7 required for T lymphocyte exit from peripheral tissues. Nat Immunol 6, 889–894 (2005). https://doi.org/10.1038/ni1238

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1238

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing