Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Human primary immunodeficiency diseases: a perspective

Abstract

Primary immunodeficiency diseases consist of a group of more than 100 inherited conditions, mostly monogenic, predisposing individuals to different sets of infections, allergy, autoimmunity and cancer. Primary immunodeficiencies therefore represent exquisite models of various immunopathological settings. The identification of the associated genes, 100 so far, has generated a plethora of information about the immune system and spurred the analysis of many aspects of the development, function and regulation of both innate and adaptive immunity. These findings can potentially contribute to improved care of affected individuals by providing new diagnostic and/or therapeutic tools.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Primary B cell immunodeficiencies.
Figure 2: Immunoglobulin CSR and SHM: insight from the study of HIGM syndromes.
Figure 3: Putative mechanisms of genetically determined mendelian autoimmune conditions.

Similar content being viewed by others

References

  1. Chapel, H., Geha, R. & Rosen, F. Primary immunodeficiency diseases: an update. Clin. Exp. Immunol. 132, 9–15 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fischer, A. Primary immunodeficiency diseases: an experimental model for molecular medicine. Lancet 357, 1863–1869 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Buckley, R.H. Advances in immunology: primary Immunodeficiency diseases due to defects in lymphocytes. N. Engl. J. Med. 343, 1313–1324 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Bruton, O.C., Apt, L., Gitlin, D. & Janeway, C.A. Absence of serum gammaglobulins. AMA Am. J. Dis. Child 84, 632–636 (1952).

    CAS  PubMed  Google Scholar 

  5. Good, R.A. Cellular immunology in a historical perspective. Immunol. Rev. 185, 136–158 (2002).

    Article  PubMed  Google Scholar 

  6. Person, R.E. et al. Mutations in proto-oncogene GFI1 cause human neutropenia and target ELA2. Nat. Genet. 34, 308–312 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Boocock, G.R. et al. Mutations in SBDS are associated with Shwachman-Diamond syndrome. Nat. Genet. 33, 97–101 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Stengaard-Pedersen, K. et al. Inherited deficiency of mannan-binding lectin-associated serine protease 2. N. Engl. J. Med. 349, 554–560 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Picard, C. et al. Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 299, 2076–2079 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Medvedev, A.E. et al. Distinct mutations in IRAK-4 confer hyporesponsiveness to lipopolysaccharide and interleukin-1 in a patient with recurrent bacterial infections. J. Exp. Med. 198, 521–531 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dupuis, S. et al. Impaired response to interferon-α/β and lethal viral disease in human STAT1 deficiency. Nat. Genet. 33, 388–391 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Grimbacher, B. et al. Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nat. Immunol. 4, 261–268 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Imai, K. et al. Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat. Immunol. 4, 1023–1028 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Dadi, H., Simon, A.J. & Roifman, C.M. Effect of CD3delta deficiency on maturation of αβ and γδ T-cell lineages in severe combined immunodeficiency. N. Engl. J. Med. 349, 1821–1828 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Kofoed, E.M. et al. Growth hormone insensitivity associated with a STAT5b mutation. N. Engl. J. Med. 349, 1139–1147 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Courtois, G. et al. A hypermorphic IκBα mutation is associated with autosomal dominant anhidrotic ectodermal dysplasia and T cell immunodeficiency. J. Clin. Invest. 112, 1108–1115 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Feldmann, J. et al. Munc 13-4 is essential for fusion competence of cytolytic granules and its defect causes a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell 115, 461–73 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Ramoz, N. et al. Mutations in two adjacent novel genes are associated with epidermodysplasia verruciformis. Nat. Genet. 32, 579–581 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Hernandez, P.A. et al. Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat. Genet. 34, 70–74 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Conley, M.E., Rohrer, J., Rapalus, L., Boylin, E.C. & Minegishi, Y. Defects in early B-cell development: comparing the consequences of abnormalities in pre-BCR signaling in the human and the mouse. Immunol. Rev. 178, 75–90 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Notarangelo, L.D. & Hayward, A.R. X-linked immunodeficiency with hyper-IgM (XHIM). Clin. Exp. Immunol. 120, 399–405 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ferrari, S. et al. Mutations of CD40 gene cause an autosomal recessive form of immunodeficiency with hyper IgM. Proc. Natl. Acad. Sci. USA 98, 12614–12619 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Muramatsu, M. et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J. Biol. Chem. 274, 18470–18476 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Revy, P. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell 102, 565–575 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Muramatsu, M. et al. Class switch recombination and somatic hypermutation require activation-induced cytidine deaminase (AID), a member of RNA editing cytidine deaminase family. Cell 102, 553–563 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Honjo, T., Kinoshita, K. & Muramatsu, M. Molecular mechanism of class switch recombination: linkage with somatic hypermutation. Annu. Rev. Immunol. 20, 165–196 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Petersen-Mahrt, S.K., Harris, R.S. & Neuberger, M.S. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418, 99–104 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Chaudhuri, J. et al. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 422, 726–730 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Pham, P., Bransteitter, R., Petruska, J. & Goodman, M.F. Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation. Nature 424, 103–107 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Ramiro, A.R., Stavropoulos, P., Jankovic, M. & Nussenzweig, M.C. Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand. Nat. Immunol. 4, 452–456 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Dickerson, S.K., Market, E., Besmer, E. & Papavasiliou, F.N. AID mediates hypermutation by deaminating single stranded DNA. J. Exp. Med. 197, 1291–1296 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rada, C. et al. Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice. Curr. Biol. 12, 1748–1755 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Ta, V.T. et al. AID mutant analyses indicate requirement for class-switch-specific cofactors. Nat. Immunol. 4, 843–848 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Barreto, V., Reina-San-Martin, B., Ramiro, A.R., McBride, K.M. & Nussenzweig, M. C-terminal deletion of AID uncouples class switch recombination from somatic hypermutation and gene conversion. Cell 12, 501–508 (2003).

    CAS  Google Scholar 

  35. Imai, K. et al. Hyper-IgM syndrome type 4 with a B-lymphocyte intrinsic selective deficiency in immunoglobulin class switch recombination. J. Clin. Invest. 112, 136–142 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kenter, A.L. Class-switch recombination: after the dawn of AID. Curr. Opin. Immunol. 15, 190–198 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Manis, J.P. & Alt, F.W. Novel antibody switching defects in human patients. J. Clin. Invest. 112, 19–22 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bassing, C.H. et al. Increased ionizing radiation sensitivity and genomic instability in the absence of histone H2AX. Proc. Natl. Acad. Sci. USA 99, 8173–8178 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Celeste, A. et al. Genomic instability in mice lacking histone H2AX. Science 296, 922–927 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Harada, Y., Muramatsu, M., Shibata, T., Honjo, T. & Kuroda, K. Unmutated immunoglobulin M can protect mice from death by influenza virus infection. J. Exp. Med. 197, 1779–1785 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Frazer, I.H. et al. Potential strategies utilised by papillomavirus to evade host immunity. Immunol. Rev. 168, 131–142 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Allan, R.S. et al. Epidermal viral immunity induced by CD8α+ dendritic cells but not by Langerhans cells. Science 301, 1925–1928 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Zinkernagel, R.M. On differences between immunity and immunological memory. Curr. Opin. Immunol. 14, 523–536 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Hemmi, H. et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol. 3, 196–200 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Cooper, K.D., Androphy, E.J., Lowy, D. & Katz, S.I. Antigen presentation and T-cell activation in epidermodysplasia verruciformis. J. Invest. Dermatol. 94, 769–776 (1990).

    Article  CAS  PubMed  Google Scholar 

  46. Gorlin, R.J. et al. WHIM syndrome, an autosomal dominant disorder: clinical, hematological, and molecular studies. Am. J. Med. Genet. 91, 368–376 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Chae, K.M., Ertle, J.O. & Tharp, M.D. B-cell lymphoma in a patient with WHIM syndrome. J. Am. Acad. Dermatol. 44, 124–128 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Casal, J. & Tarrago, D. Immunity to Streptococcus pneumoniae: factors affecting production and efficacy. Curr. Opin. Infect. Dis. 16, 219–224 (2003).

    Article  PubMed  Google Scholar 

  49. Roy, S. et al. MBL genotype and risk of invasive pneumococcal disease: a case-control study. Lancet 359, 1569–1573 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Zonana, J. et al. A novel X-linked disorder of immune deficiency and hypohidrotic ectodermal dysplasia is allelic to incontinentia pigmenti and due to mutations in IKK-γ (NEMO). Am. J. Hum. Genet. 67, 1555–1562 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Doffinger, R. et al. X-linked ectodermal dysplasia anhydrotic and immunodeficiency is caused by hypo-functional NEMO mutations. Nat. Genet. 27, 277–285 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Jain, A. et al. Specific missense mutations in NEMO result in hyper-IgM syndrome with hypohydrotic ectodermal dysplasia. Nat. Immunol. 2, 223–228 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Li, Q. & Verma, I.M. NF-κB regulation in the immune system. Nat. Rev. Immunol. 2, 725–734 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Suzuki, N., Suzuki, S. & Yeh, W.C. IRAK-4 as the central TIR signaling mediator in innate immunity. Trends Immunol. 23, 503–506 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Pasparakis, M., Schmidt-Supprian, M. & Rajewsky, K. IκB kinase signaling is essential for maintenance of mature B cells. J. Exp. Med. 196, 743–752 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kim, S. et al. The role of nuclear factor-B essential modulator (NEMO) in B cell development and survival. Proc. Natl. Acad. Sci. USA 100, 1203–1208 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pomerantz, J.L. & Baltimore, D. Two pathways to NF-κB. Mol. Cell 10, 693–695 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Hull, K.M., Shoham, N., Chae, J.J., Aksentijevich, I. & Kastner, D.L. The expanding spectrum of systemic autoinflammatory disorders and their rheumatic manifestations. Curr. Opin. Rheumatol. 15, 61–69 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Catalfamo, M. & Henkart, P.A. Perforin and the granule exocytosis cytotoxicity pathway. Curr. Opin. Immunol. 15, 522–527 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Nagata, S. Fas ligand-induced apoptosis. Annu. Rev. Genet. 33, 29–55 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. de Saint Basile, G. & Fischer, A. The role of cytotoxicity in lymphocyte homeostasis. Curr. Opin. Immunol. 13, 549–554 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Henter, J.I., Arico, M., Elinder, G., Imashuku, S. & Janka, G. Familial hemophagocytic lymphohistiocytosis. Primary hemophagocytic lymphohistiocytosis. Hematol. Oncol. Clin. North. Am. 12, 417–433 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Stepp, S.E. et al. Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science 286, 1957–1959 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Ménasché, G. et al. Mutations in RAB27A cause Griscelli syndrome associated with hemophagocytic syndrome. Nat. Genet. 25, 173–176 (2000).

    Article  PubMed  Google Scholar 

  65. Clark, R. & Griffiths, G.M. Lytic granules, secretory lysosomes and disease. Curr. Opin. Immunol. 15, 516–521 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Tchernev, V.T. et al. The Chediak-Higashi protein interacts with SNARE complex and signal transduction proteins. Mol. Med. 8, 56–64 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fadeel, B., Orrenius, S. & Henter, J.I. Induction of apoptosis and caspase activation in cells obtained from familial haemophagocytic lymphohistiocytosis patients. Br. J. Haematol. 106, 406–415 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Van Parijs, L. & Abbas, A.K. Homeostasis and self-tolerance in the immune system: turning lymphocytes off. Science 280, 243–248 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Badovinac, V.P., Porter, B.B. & Harty, J.T. Programmed contraction of CD8+ T cells after infection. Nat. Immunol. 3, 619–626 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Matloubian, M. et al. A role for perforin in downregulating T-cell responses during chronic viral infection. J. Virol. 73, 2527–2536 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Huang, J.F. et al. TCR-Mediated internalization of peptide-MHC complexes acquired by T cells. Science 286, 952–954 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Hanon, E. et al. Fratricide among CD8+ T lymphocytes naturally infected with human T cell lymphotropic virus type I. Immunity 13, 657–664 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Landman-Parker, J., Le Deist, F., Blaise, A., Brison, O. & Fischer, A. Partial engraftment of donor bone marrow cells associated with long-term remission of haemophagocytic lymphohistiocytosis. Br. J. Haematol. 85, 37–41 (1993).

    Article  CAS  PubMed  Google Scholar 

  74. Rieux-Laucat, F. et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 268, 1347–1349 (1995).

    Article  CAS  PubMed  Google Scholar 

  75. Fisher, G.H. et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81, 935–946 (1995).

    Article  CAS  PubMed  Google Scholar 

  76. Wang, J. et al. Inherited human Caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell 98, 47–58 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Badovinac, V.P., Hamilton, S.E. & Harty, J.T. Viral infection results in massive CD8+ T cell expansion and mortality in vaccinated perforin-deficient mice. Immunity 18, 463–474 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Rathmell, J.C. & Goodnow, C.C. Autoimmunity. The Fas track. Curr. Biol. 5, 1218–1221 (1995).

    Article  CAS  PubMed  Google Scholar 

  79. Bjorses, P., Aaltonen, J., Horelli-Kuitunen, N., Yaspo, M.L. & Peltonen, L. Gene defect behind APECED: a new clue to autoimmunity. Hum. Mol. Genet. 7, 1547–1553 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. The Finnish-German APECED Consortium. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat. Genet. 17, 349–403 (1997).

  81. Ramsey, C. et al. Aire deficient mice develop multiple features of APECED phenotype and show altered immune response. Hum. Mol. Genet. 11, 397–409 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Anderson, M.S. et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 298, 1395–1401 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Gambineri, E., Torgerson, T.R. & Ochs, H.D. Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis. Curr. Opin. Rheumatol. 15, 430–435 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Liston, A., Lesage, S., Wilson, J., Peltonen, L. & Goodnow, C.C. Aire regulates negative selection of organ-specific T cells. Nat. Immunol. 4, 350–354 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Chin, R.K. et al. Lymphotoxin pathway directs thymic Aire expression. Nat. Immunol. 4, 1121–1127 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Notarangelo, L.D., Villa, A. & Schwarz, K. RAG and RAG defects. Curr. Opin. Immunol. 11, 435–442 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Bennett, C.L. et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27, 20–21 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Wildin, R.S. et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat. Genet. 27, 18–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Hori, S. Control of regulatory T cell development by the transcription factor Foxp3 . Science 299, 1057–1061 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Brunkow, M.E. et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 27, 68–73 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Fontenot, J.D., Gavin, M.A. & Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Khattri, R., Cox, T., Yasayko, S.A. & Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 4, 337–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Tommasini, A. et al. X-chromosome inactivation analysis in a female carrier of FOXP3 mutation. Clin. Exp. Immunol. 130, 127–130 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Baud, O. et al. Treatment of the immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) by allogeneic bone marrow transplantation. N. Engl. J. Med. 344, 1758–1762 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. von Boehmer, H. Dynamics of suppressor T cells: in vivo veritas. J. Exp. Med. 198, 845–849 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Casanova, J.L. & Abel, L. Genetic dissection of immunity to mycobacteria: the human model. Annu. Rev. Immunol. 20, 581–620 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Dai, Y. et al. Nonhomologous end joining and V(D)J recombination require an additional factor. Proc. Natl. Acad. Sci. USA 100, 2462–2467 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Moshous, D. et al. Partial T and B lymphocyte immunodeficiency and predisposition to lymphoma in patients with hypomorphic mutations in Artemis. J. Clin. Invest. 111, 381–387 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Layer, K. et al. Autoimmunity as the consequence of a spontaneous mutation in Rasgrp1. Immunity 19, 243–255 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Foster, C.B. et al. Host defense molecule polymorphisms influence the risk for immune-mediated complications in chronic granulomatous disease. J. Clin. Invest. 102, 2146–2155 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Loy, A.L. & Goodnow, C.C. Novel approaches for identifying genes regulating lymphocyte development and function. Curr. Opin. Immunol. 14, 260–265 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Paloneva, J. et al. Loss-of-function mutations in TYROBP (DAP12) result in a presenile dementia with bone cysts. Nat. Genet. 25, 357–361 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank G. de Saint Basile, A. Durandy, F. Le Deist, P. Revy and F. Rieux-Laucat (Institut National de la Santé et de la Recherche Médicale U429), whose contributions are discussed herein. I also thank M. Tiouri for her secretarial assistance.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, A. Human primary immunodeficiency diseases: a perspective. Nat Immunol 5, 23–30 (2004). https://doi.org/10.1038/ni1023

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1023

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing