Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Brown-adipose-tissue macrophages control tissue innervation and homeostatic energy expenditure

Abstract

Tissue macrophages provide immunological defense and contribute to the establishment and maintenance of tissue homeostasis. Here we used constitutive and inducible mutagenesis to delete the nuclear transcription regulator Mecp2 in macrophages. Mice that lacked the gene encoding Mecp2, which is associated with Rett syndrome, in macrophages did not show signs of neurodevelopmental disorder but displayed spontaneous obesity, which was linked to impaired function of brown adipose tissue (BAT). Specifically, mutagenesis of a BAT-resident Cx3Cr1+ macrophage subpopulation compromised homeostatic thermogenesis but not acute, cold-induced thermogenesis. Mechanistically, malfunction of BAT in pre-obese mice with mutant macrophages was associated with diminished sympathetic innervation and local titers of norepinephrine, which resulted in lower expression of thermogenic factors by adipocytes. Mutant macrophages overexpressed the signaling receptor and ligand PlexinA4, which might contribute to the phenotype by repulsion of sympathetic axons expressing the transmembrane semaphorin Sema6A. Collectively, we report a previously unappreciated homeostatic role for macrophages in the control of tissue innervation. Disruption of this circuit in BAT resulted in metabolic imbalance.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Macrophage-restricted deletion of Mecp2 causes spontaneous obesity in adulthood.
Figure 2: Macrophage-restricted deletion of Mecp2 does not impair central function.
Figure 3: Macrophage-restricted deletion of Mecp2 impairs the steady-state function of BAT.
Figure 4: Normal acclimation to acute cold and hyperactivation of scWAT in the absence of Mecp2 in macrophages.
Figure 5: Effect of experimental denervation of BAT and diminished innervation of BAT in the absence of macrophage Mecp2.
Figure 6: Characterization of BAT macrophages.
Figure 7: Mecp2-mutant macrophages overexpress PlexinA4 and might interact with Sema6A-expressing sympathetic axons in iBAT.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Wynn, T.A., Chawla, A. & Pollard, J.W. Macrophage biology in development, homeostasis and disease. Nature 496, 445–455 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ginhoux, F. & Jung, S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat. Rev. Immunol. 14, 392–404 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Okabe, Y. & Medzhitov, R. Tissue biology perspective on macrophages. Nat. Immunol. 17, 9–17 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Chahrour, M. & Zoghbi, H.Y. The story of Rett syndrome: from clinic to neurobiology. Neuron 56, 422–437 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Yona, S. et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38, 79–91 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Guy, J., Hendrich, B., Holmes, M., Martin, J.E. & Bird, A. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat. Genet. 27, 322–326 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Schafer, D.P. et al. Microglia contribute to circuit defects in Mecp2 null mice independent of microglia-specific loss of Mecp2 expression. eLife 5, 185 (2016).

    Article  Google Scholar 

  8. Turnbaugh, P.J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    Article  PubMed  Google Scholar 

  9. Hesselbarth, N. et al. Tamoxifen affects glucose and lipid metabolism parameters, causes browning of subcutaneous adipose tissue and transient body composition changes in C57BL/6NTac mice. Biochem. Biophys. Res. Commun. 464, 724–729 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Horvath, T.L. The hardship of obesity: a soft-wired hypothalamus. Nat. Neurosci. 8, 561–565 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Rousso-Noori, L. et al. Protein tyrosine phosphatase epsilon affects body weight by downregulating leptin signaling in a phosphorylation-dependent manner. Cell Metab. 13, 562–572 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Valdearcos, M. et al. Microglia dictate the impact of saturated fat consumption on hypothalamic inflammation and neuronal function. Cell Rep. 9, 2124–2138 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Richard, D. & Picard, F. Brown fat biology and thermogenesis. Front. Biosci. (Landmark Ed.) 16, 1233–1260 (2011).

    Article  CAS  Google Scholar 

  14. Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Feldmann, H.M., Golozoubova, V., Cannon, B. & Nedergaard, J. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab. 9, 203–209 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. de Jong, J.M.A., Larsson, O., Cannon, B. & Nedergaard, J. A stringent validation of mouse adipose tissue identity markers. Am. J. Physiol. Endocrinol. Metab. 308, E1085–E1105 (2015).

    Article  PubMed  Google Scholar 

  17. Seale, P. et al. Transcriptional control of brown fat determination by PRDM16. Cell Metab. 6, 38–54 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chechi, K., Carpentier, A.C. & Richard, D. Understanding the brown adipocyte as a contributor to energy homeostasis. Trends Endocrinol. Metab. 24, 408–420 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. López, M., Alvarez, C.V., Nogueiras, R. & Diéguez, C. Energy balance regulation by thyroid hormones at central level. Trends Mol. Med. 19, 418–427 (2013).

    Article  PubMed  Google Scholar 

  20. Harms, M. & Seale, P. Brown and beige fat: development, function and therapeutic potential. Nat. Med. 19, 1252–1263 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Liang, H. & Ward, W.F. PGC-1alpha: a key regulator of energy metabolism. Adv. Physiol. Educ. 30, 145–151 (2006).

    Article  PubMed  Google Scholar 

  22. Enerbäck, S. et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387, 90–94 (1997).

    Article  PubMed  Google Scholar 

  23. Nguyen, K.D. et al. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480, 104–108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Qiu, Y. et al. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 157, 1292–1308 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ryu, V., Garretson, J.T., Liu, Y., Vaughan, C.H. & Bartness, T.J. Brown adipose tissue has sympathetic-sensory feedback circuits. J. Neurosci. 35, 2181–2190 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bartness, T.J., Vaughan, C.H. & Song, C.K. Sympathetic and sensory innervation of brown adipose tissue. Int. J. Obes. Relat. Metab. Disord. 34 (Suppl. 1), S36–S42 (2010).

    Article  Google Scholar 

  27. Bachman, E.S. et al. βAR signaling required for diet-induced thermogenesis and obesity resistance. Science 297, 843–845 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Klingenspor, M., Meywirth, A., Stöhr, S. & Heldmaier, G. Effect of unilateral surgical denervation of brown adipose tissue on uncoupling protein mRNA level and cytochrom-c-oxidase activity in the Djungarian hamster. J. Comp. Physiol. B 163, 664–670 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Bartness, T.J. & Wade, G.N. Effects of interscapular brown adipose tissue denervation on body weight and energy metabolism in ovariectomized and estradiol-treated rats. Behav. Neurosci. 98, 674–685 (1984).

    Article  CAS  PubMed  Google Scholar 

  30. Dulloo, A.G. & Miller, D.S. Energy balance following sympathetic denervation of brown adipose tissue. Can. J. Physiol. Pharmacol. 62, 235–240 (1984).

    Article  CAS  PubMed  Google Scholar 

  31. Gautier, E.L. et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 13, 1118–1128 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Jung, S. et al. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol. 20, 4106–4114 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Goldmann, T. et al. A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nat. Neurosci. 16, 1618–1626 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Lavin, Y. et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159, 1312–1326 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang, W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  CAS  Google Scholar 

  36. Sanz, E. et al. Cell-type-specific isolation of ribosome-associated mRNA from complex tissues. Proc. Natl. Acad. Sci. USA 106, 13939–13944 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ben-Shachar, S., Chahrour, M., Thaller, C., Shaw, C.A. & Zoghbi, H.Y. Mouse models of MeCP2 disorders share gene expression changes in the cerebellum and hypothalamus. Hum. Mol. Genet. 18, 2431–2442 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yaron, A., Huang, P.-H., Cheng, H.-J. & Tessier-Lavigne, M. Differential requirement for Plexin-A3 and -A4 in mediating responses of sensory and sympathetic neurons to distinct class 3 Semaphorins. Neuron 45, 513–523 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Suto, F. et al. Interactions between plexin-A2, plexin-A4, and semaphorin 6A control lamina-restricted projection of hippocampal mossy fibers. Neuron 53, 535–547 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Kruger, R.P., Aurandt, J. & Guan, K.-L. Semaphorins command cells to move. Nat. Rev. Mol. Cell Biol. 6, 789–800 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Perez-Branguli, F. et al. Reverse signaling by semaphorin-6A regulates cellular aggregation and neuronal morphology. PLoS One 11, e0158686 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Morrison, S.F., Madden, C.J. & Tupone, D. Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab. 19, 741–756 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Suto, F. et al. Plexin-a4 mediates axon-repulsive activities of both secreted and transmembrane semaphorins and plays roles in nerve fiber guidance. J. Neurosci. 25, 3628–3637 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Leighton, P.A. et al. Defining brain wiring patterns and mechanisms through gene trapping in mice. Nature 410, 174–179 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Lumeng, C.N. & Saltiel, A.R. Inflammatory links between obesity and metabolic disease. J. Clin. Invest. 121, 2111–2117 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nagareddy, P.R. et al. Adipose tissue macrophages promote myelopoiesis and monocytosis in obesity. Cell Metab. 19, 821–835 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nisoli, E., Tonello, C., Benarese, M., Liberini, P. & Carruba, M.O. Expression of nerve growth factor in brown adipose tissue: implications for thermogenesis and obesity. Endocrinology 137, 495–503 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Muller, P.A. et al. Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell 158, 300–313 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lyst, M.J. & Bird, A. Rett syndrome: a complex disorder with simple roots. Nat. Rev. Genet. 16, 261–275 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Gabel, H.W. et al. Disruption of DNA-methylation-dependent long gene repression in Rett syndrome. Nature 522, 89–93 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zong, H., Espinosa, J.S., Su, H.H., Muzumdar, M.D. & Luo, L. Mosaic analysis with double markers in mice. Cell 121, 479–492 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lindeberg, J. et al. Transgenic expression of Cre recombinase from the tyrosine hydroxylase locus. Genesis 40, 67–73 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Shaked, I. et al. MicroRNA-132 potentiates cholinergic anti-inflammatory signaling by targeting acetylcholinesterase. Immunity 31, 965–973 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Greenman, Y. et al. Postnatal ablation of POMC neurons induces an obese phenotype characterized by decreased food intake and enhanced anxiety-like behavior. Mol. Endocrinol. 27, 1091–1102 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee, Y.-H., Petkova, A.P., Konkar, A.A. & Granneman, J.G. Cellular origins of cold-induced brown adipocytes in adult mice. FASEB J. 29, 286–299 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Jaitin, D.A. et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343, 776–779 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Boughton, B.A. et al. Comprehensive profiling and quantitation of amine group containing metabolites. Anal. Chem. 83, 7523–7530 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of the Jung laboratory for discussion; R. Goldner for technical assistance; A. Rudich and M. Jastroch for advice and comments on the manuscript; G. Shakhar and R. Eilam for help with imaging and immunofluorescence; Z. Kam for writing an algorithm for the axon counting; and the Amit laboratory for advice on profiling. Supported by the Israeli Science Foundation (Jung laboratory), the European Research Council (340345 for the Jung laboratory), the University of Michigan–Israel Partnership for Research (Jung laboratory), the Lombroso fund (N.C.). the Perlman Family Foundation (Y.K.) and the Sarah and Rolando Uziel Research Associate Chair (Y.K.).

Author information

Authors and Affiliations

Authors

Contributions

Y.W., S.B.-H. and S.J. designed the study and wrote the manuscript; Y.W. and S.B.-H. performed most of the experimental work; N.C. performed neuron quantification; Z.H. established the RiboTag approach; H.S.S. and A.Y. provided reagents and critical advice for the neuronal analysis; Y.K., V.K. and A.B. provided help and advice with metabolic analysis, imaging analysis and mass spectrometry; E.D. provided bioinformatics analysis; and Y.S.-H. and L.C.-M. performed gene-expression profiling.

Corresponding author

Correspondence to Steffen Jung.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 5 and 6 (PDF 2649 kb)

Supplementary Table 1

Genes enriched in BAT macrophages across macrophage population (XLSX 53 kb)

Supplementary Table 2

List of genes enriched in CX3CR1+ BAT macrophages (XLSX 50 kb)

Supplementary Table 3

List of genes enriched in CX3CR1- BAT macrophages (PDF 294 kb)

Supplementary Table 4

Part a: genes upregulated in MeCP2 null macrophages (PDF 114 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolf, Y., Boura-Halfon, S., Cortese, N. et al. Brown-adipose-tissue macrophages control tissue innervation and homeostatic energy expenditure. Nat Immunol 18, 665–674 (2017). https://doi.org/10.1038/ni.3746

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.3746

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing