Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

C-type lectin receptors orchestrate antifungal immunity

Abstract

Immunity to pathogens critically requires pattern-recognition receptors (PRRs) to trigger intracellular signaling cascades that initiate and direct innate and adaptive immune responses. For fungal infections, these responses are primarily mediated by members of the C-type lectin receptor family. In this Review, we highlight recent advances in the understanding of the roles and mechanisms of these multifunctional receptors, explore how these PRRs orchestrate antifungal immunity and briefly discuss progress in the use of these receptors as targets for antifungal and other vaccines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the fungal cell wall.
Figure 2: Transmembrane CLRs involved in antifungal immunity and their intracellular signaling pathways.
Figure 3: Integration of CLR-mediated signaling directs adaptive immunity.
Figure 4: CLRs mediate inflammasome activation.

Similar content being viewed by others

References

  1. Brown, G.D., Denning, D.W. & Levitz, S.M. Tackling human fungal infections. Science 336, 647 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Brown, G.D. Innate antifungal immunity: the key role of phagocytes. Annu. Rev. Immunol. 29, 1–21 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bourgeois, C. et al. Conventional dendritic cells mount a type I IFN response against Candida spp. requiring novel phagosomal TLR7-mediated IFN-β signaling. J. Immunol. 186, 3104–3112 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Netea, M.G. et al. Variable recognition of Candida albicans strains by TLR4 and lectin recognition receptors. Med. Mycol. 48, 897–903 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Netea, M.G. & van der Meer, J.W. Immunodeficiency and genetic defects of pattern-recognition receptors. N. Engl. J. Med. 364, 60–70 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. von Bernuth, H. et al. Pyogenic bacterial infections in humans with MyD88 deficiency. Science 321, 691–696 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zelensky, A.N. & Gready, J.E. The C-type lectin-like domain superfamily. FEBS J. 272, 6179–6217 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Netea, M.G., Brown, G.D., Kullberg, B.J. & Gow, N.A. An integrated model of the recognition of Candida albicans by the innate immune system. Nat. Rev. Microbiol. 6, 67–78 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Reese, T.A. et al. Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature 447, 92–96 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Drummond, R.A., Saijo, S., Iwakura, Y. & Brown, G.D. The role of Syk/CARD9 coupled C-type lectins in antifungal immunity. Eur. J. Immunol. 41, 276–281 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. LeibundGut-Landmann, S. et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat. Immunol. 8, 630–638 (2007). This work is the first demonstration that C-type lectin receptors can induce differentiation of T cells and T H 17 responses.

    Article  CAS  PubMed  Google Scholar 

  12. Gringhuis, S.I. et al. Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-κB activation through Raf-1 and Syk. Nat. Immunol. 10, 203–213 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Gringhuis, S.I. et al. C-type lectin DC-SIGN modulates toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-κB. Immunity 26, 605–616 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Saijo, S. et al. Dectin-2 recognition of α-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity 32, 681–691 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Robinson, M.J. et al. Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. J. Exp. Med. 206, 2037–2051 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schoenen, H. et al. Cutting edge: mincle is essential for recognition and adjuvanticity of the mycobacterial cord factor and its synthetic analog trehalose-dibehenate. J. Immunol. 184, 2756–2760 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. van de Veerdonk, F.L. et al. The macrophage mannose receptor induces IL-17 in response to Candida albicans. Cell Host Microbe 5, 329–340 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Strasser, D. et al. Syk kinase-coupled C-type lectin receptors engage protein kinase C-sigma to elicit Card9 adaptor-mediated innate immunity. Immunity 36, 32–42 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Goodridge, H.S., Simmons, R.M. & Underhill, D.M. Dectin-1 stimulation by Candida albicans yeast or zymosan triggers NFAT activation in macrophages and dendritic cells. J. Immunol. 178, 3107–3115 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Gross, O. et al. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 442, 651–656 (2006). This work identified CARD9 as a critical adaptor mediating the downstream signaling from CLRs, which led to the discovery of mutations in CARD9 in humans that result in susceptibility to fungal infections31.

    Article  CAS  PubMed  Google Scholar 

  21. Sancho, D. & Reis e Sousa, C. Signaling by myeloid C-type lectin receptors in immunity and homeostasis. Annu. Rev. Immunol. 30, 491–529 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rogers, N.C. et al. Syk-dependent cytokine induction by dectin-1 reveals a novel pattern recognition pathway for C-type lectins. Immunity 22, 507–517 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Sato, K. et al. Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor gamma chain to induce innate immune responses. J. Biol. Chem. 281, 38854–38866 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Yamasaki, S., Ishikawa, E., Sakuma, M., Ogata, K. & Saito, T. Mincle is an ITAM-couples activating receptor that senses damaged cells. Nat. Immunol. 9, 1179–1188 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Goodridge, H.S. et al. Activation of the innate immune receptor Dectin-1 upon formation of a 'phagocytic synapse'. Nature 472, 471–475 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Taylor, P.R. et al. Dectin-1 is required for β-glucan recognition and control of fungal infection. Nat. Immunol. 8, 31–38 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Saijo, S. et al. Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans. Nat. Immunol. 8, 39–46 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Yamasaki, S. et al. C-type lectin Mincle is an activating receptor for pathogenic fungus, Malassezia. Proc. Natl. Acad. Sci. USA 106, 1897–1902 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dan, J.M., Kelly, R.M., Lee, C.K. & Levitz, S.M. Role of the mannose receptor in a murine model of Cryptococcus neoformans infection. Infect. Immun. 76, 2362–2367 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ferwerda, B. et al. Human dectin-1 deficiency and mucocutaneous fungal infections. N. Engl. J. Med. 361, 1760–1767 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Glocker, E.O. et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N. Engl. J. Med. 361, 1727–1735 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gantner, B.N., Simmons, R.M. & Underhill, D.M. Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J. 24, 1277–1286 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee, S.J., Zheng, N.Y., Clavijo, M. & Nussenzweig, M.C. Normal host defense during systemic Candidiasis in mannose receptor-deficient mice. Infect. Immun. 71, 437–445 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gringhuis, S.I. et al. Selective C-Rel activation via Malt1 controls anti-fungal T(H)-17 immunity by dectin-1 and dectin-2. PLoS Pathog. 7, e1001259 (2011). This work provides a criticial molecular insight into the mechanisms behind CLR-mediated induction of T H 17 responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Underhill, D.M., Rossnagle, E., Lowell, C.A. & Simmons, R.M. Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. Blood 106, 2543–2550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Suram, S. et al. Pathways regulating cytosolic phospholipase A2 activation and eicosanoid production in macrophages by Candida albicans. J. Biol. Chem. 285, 30676–30685 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Werner, J.L. et al. Requisite role for the dectin-1 β-glucan receptor in pulmonary defense against Aspergillus fumigatus. J. Immunol. 182, 4938–4946 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Vautier, S., MacCallum, D.M. & Brown, G.D. C-type lectin receptors and cytokines in fungal immunity. Cytokine 58, 89–99 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Acosta-Rodriguez, E.V. et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat. Immunol. 8, 639–646 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Romani, L. Immunity to fungal infections. Nat. Rev. Immunol. 11, 275–288 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Conti, H.R. & Gaffen, S.L. Host responses to Candida albicans: Th17 cells and mucosal candidiasis. Microbes Infect. 12, 518–527 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. van de Veerdonk, F.L. et al. STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N. Engl. J. Med. 365, 54–61 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Liu, L. et al. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J. Exp. Med. 208, 1635–1648 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Puel, A. et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 332, 65–68 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ma, C.S. et al. Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3. J. Exp. Med. 205, 1551–1557 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Milner, J.D. et al. Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452, 773–776 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Puel, A. et al. Autoantibodies against IL-17A, IL-17F and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J. Exp. Med. 207, 291–297 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kisand, K. et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J. Exp. Med. 207, 299–308 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zelante, T. et al. IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. Eur. J. Immunol. 37, 2695–2706 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Barrett, N.A. et al. Dectin-2 mediates Th2 immunity through the generation of cysteinyl leukotrienes. J. Exp. Med. 208, 593–604 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Osorio, F. et al. DC activated via dectin-1 convert Treg into IL-17 producers. Eur. J. Immunol. 38, 3274–3281 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rivera, A. et al. Dectin-1 diversifies Aspergillus fumigatus-specific T cell responses by inhibiting T helper type 1 CD4 T cell differentiation. J. Exp. Med. 208, 369–381 (2011). In this work, the authors use one of the few fungal-specific TCR transgenics to explore the role of Dectin-1 in the development adaptive immunity during fungal infections and demonstrate how this CLR promotes T H 17 development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sutton, C.E. et al. Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 31, 331–341 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Martin, B., Hirota, K., Cua, D.J., Stockinger, B. & Veldhoen, M. Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals. Immunity 31, 321–330 (2009). This work showed that γδ T cells express CLR and can respond directly to fungi.

    Article  CAS  PubMed  Google Scholar 

  55. Kawakami, K. et al. Monocyte chemoattractant protein-1-dependent increase of Vα 14 NKT cells in lungs and their roles in Th1 response and host defense in cryptococcal infection. J. Immunol. 167, 6525–6532 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Cohen, N.R. et al. Innate recognition of cell wall β-glucans drives invariant natural killer T cell responses against fungi. Cell Host Microbe 10, 437–450 (2011). This work identified a CLR-mediated mechanism of activation of self-reactive i NKT cell that induces IFNγ in response to fungi.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kawai, T. & Akira, S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34, 637–650 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Netea, M.G. et al. Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J. Clin. Invest. 116, 1642–1650 (2006). In this work, using fungal mutants lacking various cell-wall carbohydrates and immune cells with PRR deficiencies, the authors provide the first demonstration of the importance of multiple receptor collaboration for inducing optimal antifungal immune responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brown, G.D. et al. Dectin-1 mediates the biological effects of β-glucan. J. Exp. Med. 197, 1119–1124 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gantner, B.N., Simmons, R.M., Canavera, S.J., Akira, S. & Underhill, D.M. Collaborative induction of inflammatory responses by Dectin-1 and Toll-like receptor 2. J. Exp. Med. 197, 1107–1117 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dennehy, K.M. et al. Syk kinase is required for collaborative cytokine production induced through Dectin-1 and Toll-like receptors. Eur. J. Immunol. 38, 500–506 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dennehy, K.M., Willment, J.A., Williams, D.L. & Brown, G.D. Reciprocal regulation of IL-23 and IL-12 following co-activation of Dectin-1 and TLR signaling pathways. Eur. J. Immunol. 39, 1379–1386 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gerosa, F. et al. Differential regulation of interleukin 12 and interleukin 23 production in human dendritic cells. J. Exp. Med. 205, 1447–1461 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Huang, H. et al. Distinct patterns of dendritic cell cytokine release stimulated by fungal β-glucans and toll-like receptor agonists. Infect. Immun. 77, 1774–1781 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nagaoka, K. et al. Association of SIGNR1 with TLR4-MD-2 enhances signal transduction by recognition of LPS in gram-negative bacteria. Int. Immunol. 17, 827–836 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Sato, M. et al. Direct binding of toll-like receptor 2 to zymosan, and zymosan-induced NF-κB activation and TNF-α secretion are down-regulated by lung collectin surfactant protein A. J. Immunol. 171, 417–425 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Ameen, M. Chromoblastomycosis: clinical presentation and management. Clin. Exp. Dermatol. 34, 849–854 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. da Gloria Sousa, M. et al. Restoration of pattern recognition receptor costimulation to treat chromoblastomycosis, a chronic fungal infection of the skin. Cell Host Microbe 9, 436–443 (2011). In this work, the authors show how a lack of TLR and CLR co-stimulation can result in chronic fungal infection. They demonstrate that restoration of these co-stimulatory responses by treatment with exogenous PRR ligands can lead to resolution of the infection.

    Article  PubMed Central  CAS  Google Scholar 

  69. Empey, K.M., Hollifield, M. & Garvy, B.A. Exogenous heat-killed Escherichia coli improves alveolar macrophage activity and reduces Pneumocystis carinii lung burden in infant mice. Infect. Immun. 75, 3382–3393 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Franchi, L., Munoz-Planillo, R. & Nunez, G. Sensing and reacting to microbes through the inflammasomes. Nat. Immunol. 13, 325–332 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. van de Veerdonk, F.L. et al. The inflammasome drives protective Th1 and Th17 cellular responses in disseminated candidiasis. Eur. J. Immunol. 41, 2260–2268 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gross, O. et al. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459, 433–436 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Netea, M.G. et al. Differential role of IL-18 and IL-12 in the host defense against disseminated Candida albicans infection. Eur. J. Immunol. 33, 3409–3417 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Vonk, A.G. et al. Endogenous interleukin (IL)-1α and IL-1β are crucial for host defense against disseminated candidiasis. J. Infect. Dis. 193, 1419–1426 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Hise, A.G. et al. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe 5, 487–497 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Said-Sadier, N., Padilla, E., Langsley, G. & Ojcius, D.M. Aspergillus fumigatus stimulates the NLRP3 inflammasome through a pathway requiring ROS production and the Syk tyrosine kinase. PLoS ONE 5, e10008 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Tomalka, J. et al. A novel role for the NLRC4 inflammasome in mucosal defenses against the fungal pathogen Candida albicans. PLoS Pathog. 7, e1002379 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gringhuis, S.I. et al. Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1β via a noncanonical caspase-8 inflammasome. Nat. Immunol. 13, 246–254 (2012). In this work, the authors identified a noncanonical inflammasome that is triggered directly by Dectin-1.

    Article  CAS  PubMed  Google Scholar 

  79. Roy, R.M. & Klein, B.S. Dendritic cells in antifungal immunity and vaccine design. Cell Host Microbe 11, 436–446 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tacken, P.J., de Vries, I.J., Torensma, R. & Figdor, C.G. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat. Rev. Immunol. 7, 790–802 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Carter, R.W., Thompson, C., Reid, D.M., Wong, S.Y. & Tough, D.F. Preferential induction of CD4+ T cell responses through in vivo targeting of antigen to dendritic cell-associated C-type lectin-1. J. Immunol. 177, 2276–2284 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Carter, R.W., Thompson, C., Reid, D.M., Wong, S.Y. & Tough, D.F. Induction of CD8+ T cell responses through targeting of antigen to Dectin-2. Cell. Immunol. 239, 87–91 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Cruz, L.J. et al. Comparison of antibodies and carbohydrates to target vaccines to human dendritic cells via DC-SIGN. Biomaterials 33, 4229–4239 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. He, L.Z. et al. Antigenic targeting of the human mannose receptor induces tumor immunity. J. Immunol. 178, 6259–6267 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Cutler, J.E., Deepe, G.S. Jr. & Klein, B.S. Advances in combating fungal diseases: vaccines on the threshold. Nat. Rev. Microbiol. 5, 13–28 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Lang, R., Schoenen, H. & Desel, C. Targeting Syk-Card9-activating C-type lectin receptors by vaccine adjuvants: findings, implications and open questions. Immunobiology 216, 1184–1191 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Huang, H., Ostroff, G.R., Lee, C.K., Specht, C.A. & Levitz, S.M. Robust stimulation of humoral and cellular immune responses following vaccination with antigen-loaded β-glucan particles. mBio 1, e00164-10 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Aouadi, M. et al. Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. Nature 458, 1180–1184 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Spellberg, B. Vaccines for invasive fungal infections. F1000 Med. Reports 3, 13 (2011).

    Article  Google Scholar 

  90. Torosantucci, A. et al. A novel glyco-conjugate vaccine against fungal pathogens. J. Exp. Med. 202, 597–606 (2005). In this work, the authors demonstrate that vaccination with a β-glucan conjugate can drive protective responses toward several fungal species.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rachini, A. et al. An anti–β-glucan monoclonal antibody inhibits growth and capsule formation of Cryptococcus neoformans in vitro and exerts therapeutic, anticryptococcal activity in vivo. Infect. Immun. 75, 5085–5094 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bar, E. et al. A novel Th cell epitope of Candida albicans mediates protection from fungal infection. J. Immunol. 188, 5636–5643 (2012).

    Article  PubMed  CAS  Google Scholar 

  93. Wuthrich, M. et al. Vaccine-induced protection against 3 systemic mycoses endemic to North America requires Th17 cells in mice. J. Clin. Invest. 121, 554–568 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Specht, C.A., Nong, S., Dan, J.M., Lee, C.K. & Levitz, S.M. Contribution of glycosylation to T cell responses stimulated by recombinant Cryptococcus neoformans mannoprotein. J. Infect. Dis. 196, 796–800 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Sun, W.K. et al. Dectin-1 is inducible and plays a crucial role in Aspergillus-induced innate immune responses in human bronchial epithelial cells. Eur. J. Clin. Microbiol. Infect. Dis. advance online publication, doi:10.1007/s10096-012-1624-8 (6 May 2012).

  96. Weindl, G., Wagener, J. & Schaller, M. Epithelial cells and innate antifungal defense. J. Dent. Res. 89, 666–675 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lee, S.J. et al. Mannose receptor-mediated regulation of serum glycoprotein homeostasis. Science 295, 1898–1901 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Kerrigan, A.M. & Brown, G.D. Syk-coupled C-type lectins in immunity. Trends Immunol. 32, 151–156 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sattler, S., Ghadially, H. & Hofer, E. Evolution of the C-type lectin-like receptor genes of the DECTIN-1 cluster in the NK gene complex. Scientific WorldJournal 2012, 931386 (2012).

    Google Scholar 

Download references

Acknowledgements

We thank the Wellcome Trust for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon D Brown.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hardison, S., Brown, G. C-type lectin receptors orchestrate antifungal immunity. Nat Immunol 13, 817–822 (2012). https://doi.org/10.1038/ni.2369

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2369

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing