Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

IL-17RE is the functional receptor for IL-17C and mediates mucosal immunity to infection with intestinal pathogens

Abstract

Interleukin 17 receptor E (IL-17RE) is an orphan receptor of the IL-17 receptor family. Here we show that IL-17RE is a receptor specific to IL-17C and has an essential role in host mucosal defense against infection. IL-17C activated downstream signaling through IL-17RE–IL-17RA complex for the induction of genes encoding antibacterial peptides as well as proinflammatory molecules. IL-17C was upregulated in colon epithelial cells during infection with Citrobacter rodentium and acted in synergy with IL-22 to induce the expression of antibacterial peptides in colon epithelial cells. Loss of IL-17C-mediated signaling in IL-17RE-deficient mice led to lower expression of genes encoding antibacterial molecules, greater bacterial burden and early mortality during infection. Together our data identify IL-17RE as a receptor of IL-17C that regulates early innate immunity to intestinal pathogens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IL-17RE is essential for intestinal immunity to infection with C. rodentium.
Figure 2: IL-17RE is critical for the induction of genes encoding antibacterial molecules during C. rodentium infection.
Figure 3: IL-17RE is required for IL-17C-induced gene expression in colons cultured ex vivo.
Figure 4: IL-17RE is essential for IL-17C-induced gene expression in vivo.
Figure 5: IL-17C binds to IL-17RE and IL-17RA.
Figure 6: IL-17RE is indispensable for IL-17C-induced signaling pathways.
Figure 7: IL-17C is upregulated in CECs after they encounter bacteria.
Figure 8: IL-17C and IL-22 synergistically induce genes encoding antibacterial peptides.

Similar content being viewed by others

References

  1. Eckmann, L. Animal models of inflammatory bowel disease: lessons from enteric infections. Ann. NY Acad. Sci. 1072, 28–38 (2006).

    Article  CAS  Google Scholar 

  2. Simmons, C.P. et al. Impaired resistance and enhanced pathology during infection with a noninvasive, attaching-effacing enteric bacterial pathogen, Citrobacter rodentium, in mice lacking IL-12 or IFN-γ. J. Immunol. 168, 1804–1812 (2002).

    Article  CAS  Google Scholar 

  3. Geddes, K. et al. Identification of an innate T helper type 17 response to intestinal bacterial pathogens. Nat. Med. 17, 837–844 (2011).

    Article  CAS  Google Scholar 

  4. Mangan, P.R. et al. Transforming growth factor-beta induces development of the TH17 lineage. Nature 441, 231–234 (2006).

    Article  CAS  Google Scholar 

  5. Korn, T., Bettelli, E., Oukka, M. & Kuchroo, V.K. IL-17 and Th17 Cells. Annu. Rev. Immunol. 27, 485–517 (2009).

    Article  CAS  Google Scholar 

  6. Ivanov, I.I. et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4, 337–349 (2008).

    Article  CAS  Google Scholar 

  7. Kolls, J.K. & Khader, S.A. The role of Th17 cytokines in primary mucosal immunity. Cytokine Growth Factor Rev. 21, 443–448 (2010).

    Article  CAS  Google Scholar 

  8. Weaver, C.T., Hatton, R.D., Mangan, P.R. & Harrington, L.E. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu. Rev. Immunol. 25, 821–852 (2007).

    Article  CAS  Google Scholar 

  9. Ouyang, W., Kolls, J.K. & Zheng, Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 28, 454–467 (2008).

    Article  CAS  Google Scholar 

  10. Kolls, J.K., McCray, P.B. Jr. & Chan, Y.R. Cytokine-mediated regulation of antimicrobial proteins. Nat. Rev. Immunol. 8, 829–835 (2008).

    Article  CAS  Google Scholar 

  11. Cua, D.J. & Tato, C.M. Innate IL-17-producing cells: the sentinels of the immune system. Nat. Rev. Immunol. 10, 479–489 (2010).

    Article  CAS  Google Scholar 

  12. Eyerich, S., Eyerich, K., Cavani, A. & Schmidt-Weber, C. IL-17 and IL-22: siblings, not twins. Trends Immunol. 31, 354–361 (2010).

    Article  CAS  Google Scholar 

  13. Sonnenberg, G.F., Fouser, L.A. & Artis, D. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat. Immunol. 12, 383–390 (2011).

    Article  CAS  Google Scholar 

  14. Aujla, S.J. et al. IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat. Med. 14, 275–281 (2008).

    Article  CAS  Google Scholar 

  15. Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 14, 282–289 (2008).

    Article  CAS  Google Scholar 

  16. Ishigame, H. et al. Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity 30, 108–119 (2009).

    Article  CAS  Google Scholar 

  17. Liang, S.C. et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 203, 2271–2279 (2006).

    Article  CAS  Google Scholar 

  18. Gaffen, S.L. Structure and signalling in the IL-17 receptor family. Nat. Rev. Immunol. 9, 556–567 (2009).

    Article  CAS  Google Scholar 

  19. Kolls, J.K. & Linden, A. Interleukin-17 family members and inflammation. Immunity 21, 467–476 (2004).

    Article  CAS  Google Scholar 

  20. Qian, Y., Kang, Z., Liu, C. & Li, X. IL-17 signaling in host defense and inflammatory diseases. Cell Mol. Immunol. 7, 328–333 (2010).

    Article  CAS  Google Scholar 

  21. Iwakura, Y., Ishigame, H., Saijo, S. & Nakae, S. Functional specialization of interleukin-17 family members. Immunity 34, 149–162 (2011).

    Article  CAS  Google Scholar 

  22. Chang, S.H. & Dong, C. IL-17F: regulation, signaling and function in inflammation. Cytokine 46, 7–11 (2009).

    Article  CAS  Google Scholar 

  23. Nakae, S. et al. Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 17, 375–387 (2002).

    Article  CAS  Google Scholar 

  24. Yang, X.O. et al. Regulation of inflammatory responses by IL-17F. J. Exp. Med. 205, 1063–1075 (2008).

    Article  CAS  Google Scholar 

  25. Li, H. et al. Cloning and characterization of IL-17B and IL-17C, two new members of the IL-17 cytokine family. Proc. Natl. Acad. Sci. USA 97, 773–778 (2000).

    Article  CAS  Google Scholar 

  26. Yamaguchi, Y. et al. IL-17B and IL-17C are associated with TNF-α production and contribute to the exacerbation of inflammatory arthritis. J. Immunol. 179, 7128–7136 (2007).

    Article  CAS  Google Scholar 

  27. Ely, L.K., Fischer, S. & Garcia, K.C. Structural basis of receptor sharing by interleukin 17 cytokines. Nat. Immunol. 10, 1245–1251 (2009).

    Article  CAS  Google Scholar 

  28. Ye, P. et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J. Exp. Med. 194, 519–527 (2001).

    Article  CAS  Google Scholar 

  29. Kuestner, R.E. et al. Identification of the IL-17 receptor related molecule IL-17RC as the receptor for IL-17F. J. Immunol. 179, 5462–5473 (2007).

    Article  CAS  Google Scholar 

  30. Toy, D. et al. Cutting edge: interleukin 17 signals through a heteromeric receptor complex. J. Immunol. 177, 36–39 (2006).

    Article  CAS  Google Scholar 

  31. Ho, A.W. et al. IL-17RC is required for immune signaling via an extended SEF/IL-17R signaling domain in the cytoplasmic tail. J. Immunol. 185, 1063–1070 (2010).

    Article  CAS  Google Scholar 

  32. Hu, Y. et al. IL-17RC is required for IL-17A- and IL-17F-dependent signaling and the pathogenesis of experimental autoimmune encephalomyelitis. J. Immunol. 184, 4307–4316 (2010).

    Article  CAS  Google Scholar 

  33. Qian, Y. et al. The adaptor Act1 is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease. Nat. Immunol. 8, 247–256 (2007).

    Article  CAS  Google Scholar 

  34. Chang, S.H., Park, H. & Dong, C. Act1 adaptor protein is an immediate and essential signaling component of interleukin-17 receptor. J. Biol. Chem. 281, 35603–35607 (2006).

    Article  CAS  Google Scholar 

  35. Schwandner, R., Yamaguchi, K. & Cao, Z. Requirement of tumor necrosis factor receptor-associated factor (TRAF)6 in interleukin 17 signal transduction. J. Exp. Med. 191, 1233–1240 (2000).

    Article  CAS  Google Scholar 

  36. Zhu, S. et al. Modulation of experimental autoimmune encephalomyelitis through TRAF3-mediated suppression of interleukin 17 receptor signaling. J. Exp. Med. 207, 2647–2662 (2010).

    Article  CAS  Google Scholar 

  37. Liu, C. et al. Act1, a U-box E3 ubiquitin ligase for IL-17 signaling. Sci. Signal. 2, ra63 (2009).

    PubMed  PubMed Central  Google Scholar 

  38. Shen, F. et al. IL-17 receptor signaling inhibits C/EBPβ by sequential phosphorylation of the regulatory 2 domain. Sci. Signal. 2, ra8 (2009).

    Article  Google Scholar 

  39. Rickel, E.A. et al. Identification of functional roles for both IL-17RB and IL-17RA in mediating IL-25-induced activities. J. Immunol. 181, 4299–4310 (2008).

    Article  CAS  Google Scholar 

  40. Li, T.S., Li, X.N., Chang, Z.J., Fu, X.Y. & Liu, L. Identification and functional characterization of a novel interleukin 17 receptor: a possible mitogenic activation through ras/mitogen-activated protein kinase signaling pathway. Cell. Signal. 18, 1287–1298 (2006).

    Article  Google Scholar 

  41. Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373–384.

  42. Johansen, C., Riis, J.L., Kragballe, K. & Iversen, L. TNFα-mediated induction of IL-17C in human keratinocytes is controlled by nuclear factor kB (NF-kB). J Biol Chem. 286, 25487–25494 (2011).

    Article  CAS  Google Scholar 

  43. Strong, S.A., Pizarro, T.T., Klein, J.S., Cominelli, F. & Fiocchi, C. Proinflammatory cytokines differentially modulate their own expression in human intestinal mucosal mesenchymal cells. Gastroenterology 114, 1244–1256 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank ZymoGenetics for Il17re−/− mice. Supported by the National Natural Science Foundation of China (30930084, 91029708 and 30871298), the 973 program (2010CB529705), the Chinese Academy of Sciences (KSCX2-YW-R-146) and the Science and Technology Commission of Shanghai Municipality (10JC1416600).

Author information

Authors and Affiliations

Authors

Contributions

X.S. and Y.Q. designed the experiments and wrote the manuscript; X.S. did most of the experiments; S.Z. and Y.L. helped with the mouse experiments; P.S. helped with the signaling experiments; and S.D.L. and Y.S. provided reagents and technical support.

Corresponding author

Correspondence to Youcun Qian.

Ethics declarations

Competing interests

S.D.L. was an employee of ZymoGenetics when these studies were done.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Table 1 (PDF 6289 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, X., Zhu, S., Shi, P. et al. IL-17RE is the functional receptor for IL-17C and mediates mucosal immunity to infection with intestinal pathogens. Nat Immunol 12, 1151–1158 (2011). https://doi.org/10.1038/ni.2155

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2155

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing