Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Death receptor signal transducers: nodes of coordination in immune signaling networks

Abstract

Death receptors (DRs) are members of the tumor necrosis factor receptor superfamily that possess a cytoplasmic death domain (DD). DRs regulate important operational and homeostatic aspects of the immune system. They transmit signals through apical protein complexes, which are nucleated by the DD adaptors FADD and TRADD, to control cellular outcomes that range from apoptosis to gene activation. FADD and TRADD also nucleate several distal signaling complexes, which mediate cross-talk between distinct DR signaling pathways. Moreover, together with other DR signal transducers, FADD and TRADD participate in functional complexes assembled by certain non-DR immune cell receptors, such as pattern-recognition receptors. Thus, DR signal transducers may provide important nodes of coordination in immune signaling networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Primary FADD- and TRADD-dependent DR signaling complexes.
Figure 2: Secondary FADD-, TRADD- and RIP1-dependent signaling complexes.
Figure 3: Non-DR signaling complexes involving DR signal transducers.

Similar content being viewed by others

References

  1. Locksley, R.M., Killeen, N. & Lenardo, M.J. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104, 487–501 (2001).

    CAS  PubMed  Google Scholar 

  2. Ashkenazi, A. & Dixit, V.M. Death receptors: signaling and modulation. Science 281, 1305–1308 (1998).

    CAS  PubMed  Google Scholar 

  3. Wu, G.S., Burns, T.F., Zhan, Y., Alnemri, E.S. & El-Deiry, W.S. Molecular cloning and functional analysis of the mouse homologue of the KILLER/DR5 tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor. Cancer Res. 59, 2770–2775 (1999).

    CAS  PubMed  Google Scholar 

  4. Festjens, N., Vanden Berghe, T., Cornelis, S. & Vandenabeele, P. RIP1, a kinase on the crossroads of a cell's decision to live or die. Cell Death Differ. 14, 400–410 (2007).

    CAS  PubMed  Google Scholar 

  5. Varfolomeev, E. & Vucic, D. (Un)expected roles of c-IAPs in apoptotic and NFκB signaling pathways. Cell Cycle 7, 1511–1521 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Ashkenazi, A. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat. Rev. Cancer 2, 420–430 (2002).

    CAS  PubMed  Google Scholar 

  7. Pan, G. et al. Identification and functional characterization of DR6, a novel death domain-containing TNF receptor. FEBS Lett. 431, 351–356 (1998).

    CAS  PubMed  Google Scholar 

  8. Micheau, O. & Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114, 181–190 (2003).

    CAS  PubMed  Google Scholar 

  9. Wang, L., Du, F. & Wang, X. TNF-α induces two distinct caspase-8 activation pathways. Cell 133, 693–703 (2008). Provides evidence that two distinct cytoplasmic complexes downstream of TNFR1 can activate caspase-8-mediated apoptosis; this is consistent with an earlier study (ref. 8).

    CAS  PubMed  Google Scholar 

  10. Varfolomeev, E. et al. Molecular determinants of kinase pathway activation by Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand. J. Biol. Chem. 280, 40599–40608 (2005). Describes a secondary complex downstream of DR5 that activates NF-κB, JNK and p38 MAPK.

    CAS  PubMed  Google Scholar 

  11. Koenig, A., Russell, J.Q., Rodgers, W.A. & Budd, R.C. Spatial differences in active caspase-8 defines its role in T-cell activation versus cell death. Cell Death Differ. 15, 1701–1711 (2008).

    CAS  PubMed  Google Scholar 

  12. Su, H. et al. Requirement for caspase-8 in NF-κB activation by antigen receptor. Science 307, 1465–1468 (2005).

    CAS  PubMed  Google Scholar 

  13. Chun, H.J. et al. Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature 419, 395–399 (2002). Lymphocytes from humans with homozygous caspase-8 mutations are resistant to DR-induced apoptosis but also show defective proliferation, suggesting DR-independent caspase-8 functions.

    CAS  PubMed  Google Scholar 

  14. Chen, N.J. et al. Beyond tumor necrosis factor receptor: TRADD signaling in toll-like receptors. Proc. Natl. Acad. Sci. USA 105, 12429–12434 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Pobezinskaya, Y.L. et al. The function of TRADD in signaling through tumor necrosis factor receptor 1 and TRIF-dependent Toll-like receptors. Nat. Immunol. 9, 1047–1054 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ermolaeva, M.A. et al. Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF-dependent inflammatory responses. Nat. Immunol. 9, 1037–1046 (2008). TRADD knockout studies (refs. 15 and 16 ) confirm the role of TRADD in TNFR1 signaling and further implicate TRADD in TRIF-mediated TLR pathways.

    CAS  PubMed  Google Scholar 

  17. Ma, Y. et al. Fas ligation on macrophages enhances IL-1R1-Toll-like receptor 4 signaling and promotes chronic inflammation. Nat. Immunol. 5, 380–387 (2004).

    CAS  PubMed  Google Scholar 

  18. Imtiyaz, H.Z. et al. The Fas-associated death domain protein is required in apoptosis and TLR-induced proliferative responses in B cells. J. Immunol. 176, 6852–6861 (2006).

    CAS  PubMed  Google Scholar 

  19. Michallet, M.C. et al. TRADD protein is an essential component of the RIG-like helicase antiviral pathway. Immunity 28, 651–661 (2008). Identifies TRADD as an essential component not only for proinflammatory TNFR1 signaling but also for RLH signaling.

    CAS  PubMed  Google Scholar 

  20. Takahashi, K. et al. Roles of caspase-8 and caspase-10 in innate immune responses to double-stranded RNA. J. Immunol. 176, 4520–4524 (2006). Implicates human caspases 8 and 10 as components of the RLH pathway that mediates NF-κB–dependent inflammatory responses.

    CAS  PubMed  Google Scholar 

  21. Peter, M.E. & Krammer, P.H. The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ. 10, 26–35 (2003).

    CAS  PubMed  Google Scholar 

  22. Feig, C., Tchikov, V., Schutze, S. & Peter, M.E. Palmitoylation of CD95 facilitates formation of SDS-stable receptor aggregates that initiate apoptosis signaling. EMBO J. 26, 221–231 (2007).

    CAS  PubMed  Google Scholar 

  23. Muppidi, J.R. & Siegel, R.M. Ligand-independent redistribution of Fas (CD95) into lipid rafts mediates clonotypic T cell death. Nat. Immunol. 5, 182–189 (2004).

    CAS  PubMed  Google Scholar 

  24. Wagner, K.W. et al. Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nat. Med. 13, 1070–1077 (2007).

    CAS  PubMed  Google Scholar 

  25. Sakamaki, K., Tsukumo, S. & Yonehara, S. Molecular cloning and characterization of mouse caspase-8. Eur. J. Biochem. 253, 399–405 (1998).

    CAS  PubMed  Google Scholar 

  26. Krammer, P.H., Arnold, R. & Lavrik, I.N. Life and death in peripheral T cells. Nat. Rev. Immunol. 7, 532–542 (2007).

    CAS  PubMed  Google Scholar 

  27. Budd, R.C., Yeh, W.C. & Tschopp, J. cFLIP regulation of lymphocyte activation and development. Nat. Rev. Immunol. 6, 196–204 (2006).

    CAS  PubMed  Google Scholar 

  28. Ueffing, N. et al. Mutational analyses of c-FLIPR, the only murine short FLIP isoform, reveal requirements for DISC recruitment. Cell Death Differ. 15, 773–782 (2008).

    CAS  PubMed  Google Scholar 

  29. Sharp, D.A., Lawrence, D.A. & Ashkenazi, A. Selective knockdown of the long variant of cellular FLICE inhibitory protein augments death receptor-mediated caspase-8 activation and apoptosis. J. Biol. Chem. 280, 19401–19409 (2005).

    CAS  PubMed  Google Scholar 

  30. Krueger, A., Schmitz, I., Baumann, S., Krammer, P.H. & Kirchhoff, S. Cellular FLICE-inhibitory protein splice variants inhibit different steps of caspase-8 activation at the CD95 death-inducing signaling complex. J. Biol. Chem. 276, 20633–20640 (2001).

    CAS  PubMed  Google Scholar 

  31. Boatright, K.M., Deis, C., Denault, J.B., Sutherlin, D.P. & Salvesen, G.S. Activation of caspases-8 and -10 by FLIPL . Biochem. J. 382, 651–657 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Micheau, O. et al. The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. J. Biol. Chem. 277, 45162–45171 (2002).

    CAS  PubMed  Google Scholar 

  33. Varfolomeev, E. et al. c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor α (TNFα)-induced NF-κB activation. J. Biol. Chem. 283, 24295–24299 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bertrand, M.J. et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol. Cell 30, 689–700 (2008).

    CAS  PubMed  Google Scholar 

  35. Mahoney, D.J. et al. Both cIAP1 and cIAP2 regulate TNFα-mediated NF-κB activation. Proc. Natl. Acad. Sci. USA 105, 11778–11783 (2008). Together with refs. 33 and 34 , this study implicates c-IAP1/2 as critical E3 ligases involved in RIP1-mediated activation of NF-κB and MAPKs.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wertz, I.E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430, 694–699 (2004).

    CAS  PubMed  Google Scholar 

  37. Liao, W. et al. CARP-2 is an endosome-associated ubiquitin ligase for RIP and regulates TNF-induced NF-κB activation. Curr. Biol. 18, 641–649 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hayden, M.S. & Ghosh, S. Shared principles in NF-κB signaling. Cell 132, 344–362 (2008).

    CAS  PubMed  Google Scholar 

  39. Symons, A., Beinke, S. & Ley, S.C. MAP kinase kinase kinases and innate immunity. Trends Immunol. 27, 40–48 (2006).

    CAS  PubMed  Google Scholar 

  40. Varfolomeev, E.E. & Ashkenazi, A. Tumor necrosis factor: an apoptosis JuNKie? Cell 116, 491–497 (2004).

    CAS  PubMed  Google Scholar 

  41. Schutze, S., Tchikov, V. & Schneider-Brachert, W. Regulation of TNFR1 and CD95 signalling by receptor compartmentalization. Nat. Rev. Mol. Cell Biol. 9, 655–662 (2008).

    PubMed  Google Scholar 

  42. Panka, D.J., Mano, T., Suhara, T., Walsh, K. & Mier, J.W. Phosphatidylinositol 3-kinase/Akt activity regulates c-FLIP expression in tumor cells. J. Biol. Chem. 276, 6893–6896 (2001).

    CAS  PubMed  Google Scholar 

  43. Karin, M., Lawrence, T. & Nizet, V. Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell 124, 823–835 (2006).

    CAS  PubMed  Google Scholar 

  44. Chang, L. et al. The E3 ubiquitin ligase itch couples JNK activation to TNFα-induced cell death by inducing c-FLIPL turnover. Cell 124, 601–613 (2006).

    CAS  PubMed  Google Scholar 

  45. Stanger, B.Z., Leder, P., Lee, T.H., Kim, E. & Seed, B. RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell 81, 513–523 (1995).

    CAS  PubMed  Google Scholar 

  46. Hsu, H., Huang, J., Shu, H.B., Baichwal, V. & Goeddel, D.V. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4, 387–396 (1996).

    CAS  PubMed  Google Scholar 

  47. O'Donnell, M.A., Legarda-Addison, D., Skountzos, P., Yeh, W.C. & Ting, A.T. Ubiquitination of RIP1 regulates an NF-κB-independent cell-death switch in TNF signaling. Curr. Biol. 17, 418–424 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Vince, J.E. et al. IAP antagonists target cIAP1 to induce TNFα-dependent apoptosis. Cell 131, 682–693 (2007).

    CAS  PubMed  Google Scholar 

  49. Jin, Z. & El-Deiry, W.S. Distinct signaling pathways in TRAIL- versus tumor necrosis factor-induced apoptosis. Mol. Cell. Biol. 26, 8136–8148 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zheng, L. et al. Competitive control of independent programs of tumor necrosis factor receptor-induced cell death by TRADD and RIP1. Mol. Cell. Biol. 26, 3505–3513 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Park, Y., Lee, S.W. & Sung, Y.C. Cutting edge: CpG DNA inhibits dendritic cell apoptosis by up-regulating cellular inhibitor of apoptosis proteins through the phosphatidylinositide-3′-OH kinase pathway. J. Immunol. 168, 5–8 (2002).

    CAS  PubMed  Google Scholar 

  52. Conte, D. et al. Inhibitor of apoptosis protein cIAP2 is essential for lipopolysaccharide-induced macrophage survival. Mol. Cell. Biol. 26, 699–708 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Perlman, H. et al. FLICE-inhibitory protein expression during macrophage differentiation confers resistance to fas-mediated apoptosis. J. Exp. Med. 190, 1679–1688 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Baseta, J.G. & Stutman, O. TNF regulates thymocyte production by apoptosis and proliferation of the triple negative (CD3CD4CD8) subset. J. Immunol. 165, 5621–5630 (2000).

    CAS  PubMed  Google Scholar 

  55. Bidere, N., Su, H.C. & Lenardo, M.J. Genetic disorders of programmed cell death in the immune system. Annu. Rev. Immunol. 24, 321–352 (2006).

    CAS  PubMed  Google Scholar 

  56. Sneller, M.C., Dale, J.K. & Straus, S.E. Autoimmune lymphoproliferative syndrome. Curr. Opin. Rheumatol. 15, 417–421 (2003).

    CAS  PubMed  Google Scholar 

  57. Nagata, S. Apoptosis by death factor. Cell 88, 355–365 (1997).

    CAS  PubMed  Google Scholar 

  58. Green, D.R. Fas Bim boom! Immunity 28, 141–143 (2008).

    CAS  PubMed  Google Scholar 

  59. Goodnow, C.C. Multistep pathogenesis of autoimmune disease. Cell 130, 25–35 (2007).

    CAS  PubMed  Google Scholar 

  60. Chen, M., Huang, L. & Wang, J. Deficiency of Bim in dendritic cells contributes to overactivation of lymphocytes and autoimmunity. Blood 109, 4360–4367 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Stranges, P.B. et al. Elimination of antigen-presenting cells and autoreactive T cells by Fas contributes to prevention of autoimmunity. Immunity 26, 629–641 (2007). Identifies CD95-dependent elimination of DCs as an important homeostatic mechanism for preventing autoimmunity.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Peter, M.E. et al. The CD95 receptor: apoptosis revisited. Cell 129, 447–450 (2007).

    CAS  PubMed  Google Scholar 

  63. Shortman, K. & Naik, S.H. Steady-state and inflammatory dendritic-cell development. Nat. Rev. Immunol. 7, 19–30 (2007).

    CAS  PubMed  Google Scholar 

  64. Han, L., Zhao, Y. & Jia, X. Mathematical modeling identified c-FLIP as an apoptotic switch in death receptor induced apoptosis. Apoptosis 13, 1198–1204 (2008).

    PubMed  Google Scholar 

  65. Carey, G.B. et al. B-cell receptor and Fas-mediated signals for life and death. Immunol. Rev. 176, 105–115 (2000).

    CAS  PubMed  Google Scholar 

  66. Kataoka, T. et al. The caspase-8 inhibitor FLIP promotes activation of NF-κB and Erk signaling pathways. Curr. Biol. 10, 640–648 (2000).

    CAS  PubMed  Google Scholar 

  67. Ueffing, N., Schuster, M., Keil, E., Schulze-Osthoff, K. & Schmitz, I. Upregulation of c-FLIPshort by NFAT contributes to apoptosis resistance of short-term activated T cells. Blood 112, 690–698 (2008).

    CAS  PubMed  Google Scholar 

  68. Moriyama, H. & Yonehara, S. Rapid up-regulation of c-FLIP expression by BCR signaling through the PI3K/Akt pathway inhibits simultaneously induced Fas-mediated apoptosis in murine B lymphocytes. Immunol. Lett. 109, 36–46 (2007).

    CAS  PubMed  Google Scholar 

  69. Fluur, C. et al. Potential role for IL-7 in Fas-mediated T cell apoptosis during HIV infection. J. Immunol. 178, 5340–5350 (2007).

    CAS  PubMed  Google Scholar 

  70. Rethi, B. et al. Priming of T cells to Fas-mediated proliferative signals by interleukin-7. Blood 112, 1195–1204 (2008).

    CAS  PubMed  Google Scholar 

  71. Sun, M. & Fink, P.J. A new class of reverse signaling costimulators belongs to the TNF family. J. Immunol. 179, 4307–4312 (2007).

    CAS  PubMed  Google Scholar 

  72. Suzuki, I., Martin, S., Boursalian, T.E., Beers, C. & Fink, P.J. Fas ligand costimulates the in vivo proliferation of CD8+ T cells. J. Immunol. 165, 5537–5543 (2000).

    CAS  PubMed  Google Scholar 

  73. Kokkonen, T.S., Augustin, M.T., Makinen, J.M., Kokkonen, J. & Karttunen, T.J. High endothelial venules of the lymph nodes express Fas ligand. J. Histochem. Cytochem. 52, 693–699 (2004).

    CAS  PubMed  Google Scholar 

  74. Pinkoski, M.J., Brunner, T., Green, D.R. & Lin, T. Fas and Fas ligand in gut and liver. Am. J. Physiol. Gastrointest. Liver Physiol. 278, G354–G366 (2000).

    CAS  PubMed  Google Scholar 

  75. Arase, H., Arase, N. & Saito, T. Fas-mediated cytotoxicity by freshly isolated natural killer cells. J. Exp. Med. 181, 1235–1238 (1995).

    CAS  PubMed  Google Scholar 

  76. Brunner, T. et al. Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature 373, 441–444 (1995).

    CAS  PubMed  Google Scholar 

  77. Norian, L.A. et al. The regulation of CD95 (Fas) ligand expression in primary T cells: induction of promoter activation in CD95LP-Luc transgenic mice. J. Immunol. 164, 4471–4480 (2000).

    CAS  PubMed  Google Scholar 

  78. Kim, S., Iizuka, K., Aguila, H.L., Weissman, I.L. & Yokoyama, W.M. In vivo natural killer cell activities revealed by natural killer cell-deficient mice. Proc. Natl. Acad. Sci. USA 97, 2731–2736 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Lanier, L.L. Evolutionary struggles between NK cells and viruses. Nat. Rev. Immunol. 8, 259–268 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Di Santo, J.P. Natural killer cell developmental pathways: a question of balance. Annu. Rev. Immunol. 24, 257–286 (2006).

    CAS  PubMed  Google Scholar 

  81. Huntington, N.D., Vosshenrich, C.A. & Di Santo, J.P. Developmental pathways that generate natural-killer-cell diversity in mice and humans. Nat. Rev. Immunol. 7, 703–714 (2007).

    CAS  PubMed  Google Scholar 

  82. Takeda, K. et al. TRAIL identifies immature natural killer cells in newborn mice and adult mouse liver. Blood 105, 2082–2089 (2005).

    CAS  PubMed  Google Scholar 

  83. Takeda, K. et al. Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nat. Med. 7, 94–100 (2001).

    CAS  PubMed  Google Scholar 

  84. Smyth, M.J. et al. Tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) contributes to interferon γ–dependent natural killer cell protection from tumor metastasis. J. Exp. Med. 193, 661–670 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Seki, N. et al. Tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis is an important endogenous mechanism for resistance to liver metastases in murine renal cancer. Cancer Res. 63, 207–213 (2003).

    CAS  PubMed  Google Scholar 

  86. Finnberg, N., Klein-Szanto, A.J. & El-Deiry, W.S. TRAIL-R deficiency in mice promotes susceptibility to chronic inflammation and tumorigenesis. J. Clin. Invest. 118, 111–123 (2008).

    CAS  PubMed  Google Scholar 

  87. Griffith, T.S. et al. Monocyte-mediated tumoricidal activity via the tumor necrosis factor-related cytokine, TRAIL. J. Exp. Med. 189, 1343–1354 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Washburn, B. et al. TNF-related apoptosis-inducing ligand mediates tumoricidal activity of human monocytes stimulated by Newcastle disease virus. J. Immunol. 170, 1814–1821 (2003).

    CAS  PubMed  Google Scholar 

  89. Fanger, N.A., Maliszewski, C.R., Schooley, K. & Griffith, T.S. Human dendritic cells mediate cellular apoptosis via tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). J. Exp. Med. 190, 1155–1164 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Sato, K. et al. Antiviral response by natural killer cells through TRAIL gene induction by IFN-α/β. Eur. J. Immunol. 31, 3138–3146 (2001).

    CAS  PubMed  Google Scholar 

  91. Ishikawa, E., Nakazawa, M., Yoshinari, M. & Minami, M. Role of tumor necrosis factor-related apoptosis-inducing ligand in immune response to influenza virus infection in mice. J. Virol. 79, 7658–7663 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Diehl, G.E. et al. TRAIL-R as a negative regulator of innate immune cell responses. Immunity 21, 877–889 (2004). Implicates mouse DR5 as a negative regulator of innate immune responses by attenuating NF-κB activation.

    CAS  PubMed  Google Scholar 

  93. Hayakawa, Y. et al. NK cell TRAIL eliminates immature dendritic cells in vivo and limits dendritic cell vaccination efficacy. J. Immunol. 172, 123–129 (2004).

    CAS  PubMed  Google Scholar 

  94. Mirandola, P. et al. Activated human NK and CD8+ T cells express both TNF-related apoptosis-inducing ligand (TRAIL) and TRAIL receptors but are resistant to TRAIL-mediated cytotoxicity. Blood 104, 2418–2424 (2004).

    CAS  PubMed  Google Scholar 

  95. Ashkenazi, A. Targeting the extrinsic apoptosis pathway in cancer. Cytokine Growth Factor Rev. 19, 325–331 (2008).

    CAS  PubMed  Google Scholar 

  96. Lavrik, I.N. et al. CD95 stimulation results in the formation of a novel death effector domain protein-containing complex. J. Biol. Chem. 283, 26401–26408 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Gordon, S. & Taylor, P.R. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5, 953–964 (2005).

    CAS  PubMed  Google Scholar 

  98. Johnstone, R.W., Frew, A.J. & Smyth, M.J. The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat. Rev. Cancer 8, 782–798 (2008).

    CAS  PubMed  Google Scholar 

  99. Lamhamedi-Cherradi, S.-E., Zheng, S.-J., Maguschak, K.A., Peschon, J. & Chen, Y.H. Defective thymocyte apoptosis and accelerated autoimmune diseases in TRAIL/ mice. Nat. Immunol. 4, 255–260 (2003).

    CAS  PubMed  Google Scholar 

  100. Cretney, E. et al. Normal thymocyte negative selection in TRAIL-deficient mice. J. Exp. Med. 198, 491–496 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Green, D.R. The suicide in the thymus, a twisted trail. Nat. Immunol. 4, 207–208 (2003).

    CAS  PubMed  Google Scholar 

  102. Janssen, E.M. et al. CD4+ T-cell help controls CD8 T-cell memory via TRAIL-mediated activation-induced cell death. Nature 434, 88–93 (2005). Proposes that 'helpless' CD8+ T cells are eliminated by Apo2L (also called TRAIL), which represents a mechanism for controlling adaptive immune responses.

    CAS  PubMed  Google Scholar 

  103. Hamilton, S.E., Wolkers, M.C., Schoenberger, S.P. & Jameson, S.C. The generation of protective memory-like CD8+ T cells during homeostatic proliferation requires CD4+ T cells. Nat. Immunol. 7, 475–481 (2006).

    CAS  PubMed  Google Scholar 

  104. Weckmann, M. et al. Critical link between TRAIL and CCL20 for the activation of TH2 cells and the expression of allergic airway disease. Nat. Med. 13, 1308–1315 (2007).

    CAS  PubMed  Google Scholar 

  105. Oh, S. et al. IL-15 as a mediator of CD4+ help for CD8+ T cell longevity and avoidance of TRAIL-mediated apoptosis. Proc. Natl. Acad. Sci. USA 105, 5201–5206 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Sacks, J.A. & Bevan, M.J. TRAIL deficiency does not rescue impaired CD8+ T cell memory generated in the absence of CD4+ T cell help. J. Immunol. 180, 4570–4576 (2008). In contrast to ref. 102 , this study suggests that CD4+ T cell help to CD8+ T cells is not strictly contingent on the prevention of Apo2L (also called TRAIL)-mediated apoptosis.

    CAS  PubMed  Google Scholar 

  107. Ren, X. et al. Involvement of cellular death in TRAIL/DR5-dependent suppression induced by CD4+CD25+ regulatory T cells. Cell Death Differ. 14, 2076–2084 (2007).

    CAS  PubMed  Google Scholar 

  108. Zhang, J., Cado, D., Chen, A., Kabra, N.H. & Winoto, A. Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1. Nature 392, 296–300 (1998).

    CAS  PubMed  Google Scholar 

  109. Zhang, Y. et al. Conditional Fas-associated death domain protein (FADD): GFP knockout mice reveal FADD is dispensable in thymic development but essential in peripheral T cell homeostasis. J. Immunol. 175, 3033–3044 (2005).

    CAS  PubMed  Google Scholar 

  110. Newton, K., Harris, A.W., Bath, M.L., Smith, K.G. & Strasser, A. A dominant interfering mutant of FADD/MORT1 enhances deletion of autoreactive thymocytes and inhibits proliferation of mature T lymphocytes. EMBO J. 17, 706–718 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Zornig, M., Hueber, A.O. & Evan, G. p53-dependent impairment of T-cell proliferation in FADD dominant-negative transgenic mice. Curr. Biol. 8, 467–470 (1998).

    CAS  PubMed  Google Scholar 

  112. Salmena, L. et al. Essential role for caspase 8 in T-cell homeostasis and T-cell-mediated immunity. Genes Dev. 17, 883–895 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Chau, H. et al. Cellular FLICE-inhibitory protein is required for T cell survival and cycling. J. Exp. Med. 202, 405–413 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhang, N., Hopkins, K. & He, Y.W. The long isoform of cellular FLIP is essential for T lymphocyte proliferation through an NF-κB-independent pathway. J. Immunol. 180, 5506–5511 (2008).

    CAS  PubMed  Google Scholar 

  115. Kataoka, T. & Tschopp, J. N-terminal fragment of c-FLIPL processed by caspase 8 specifically interacts with TRAF2 and induces activation of the NF-κB signaling pathway. Mol. Cell. Biol. 24, 2627–2636 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Dohrman, A. et al. Cellular FLIP (long form) regulates CD8+ T cell activation through caspase-8-dependent NF-κB activation. J. Immunol. 174, 5270–5278 (2005).

    CAS  PubMed  Google Scholar 

  117. Lens, S.M. et al. The caspase 8 inhibitor c-FLIPL modulates T-cell receptor-induced proliferation but not activation-induced cell death of lymphocytes. Mol. Cell. Biol. 22, 5419–5433 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhang, N., Hopkins, K. & He, Y.W. c-FLIP protects mature T lymphocytes from TCR-mediated killing. J. Immunol. 181, 5368–5373 (2008).

    CAS  PubMed  Google Scholar 

  119. Golks, A., Brenner, D., Krammer, P.H. & Lavrik, I.N. The c-FLIP-NH2 terminus (p22-FLIP) induces NF-κB activation. J. Exp. Med. 203, 1295–1305 (2006). Provides a new mechanism by which c-FLIP controls proapoptotic and non-apoptotic signaling in lymphocytes and DCs.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Alappat, E.C., Volkland, J. & Peter, M.E. Cell cycle effects by C-FADD depend on its C-terminal phosphorylation site. J. Biol. Chem. 278, 41585–41588 (2003).

    CAS  PubMed  Google Scholar 

  121. Hua, Z.C., Sohn, S.J., Kang, C., Cado, D. & Winoto, A. A function of Fas-associated death domain protein in cell cycle progression localized to a single amino acid at its C-terminal region. Immunity 18, 513–521 (2003).

    CAS  PubMed  Google Scholar 

  122. Arechiga, A.F. et al. A Fas-associated death domain protein/caspase-8-signaling axis promotes S-phase entry and maintains S6 kinase activity in T cells responding to IL-2. J. Immunol. 179, 5291–5300 (2007).

    CAS  PubMed  Google Scholar 

  123. Misra, R.S. et al. Caspase-8 and c-FLIPL associate in lipid rafts with NF-κB adaptors during T cell activation. J. Biol. Chem. 282, 19365–19374 (2007).

    CAS  PubMed  Google Scholar 

  124. Ch'en, I.L. et al. Antigen-mediated T cell expansion regulated by parallel pathways of death. Proc. Natl. Acad. Sci. USA 105, 17463–17468 (2008). Genetic ablation of caspase-8, NF-κB and RIP1 reveals two forms of cell death that can regulate T-cell proliferation.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Monks, C.R., Kupfer, H., Tamir, I., Barlow, A. & Kupfer, A. Selective modulation of protein kinase C-θ during T-cell activation. Nature 385, 83–86 (1997).

    CAS  PubMed  Google Scholar 

  126. Sun, S.C. & Ley, S.C. New insights into NF-κB regulation and function. Trends Immunol. 29, 469–478 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Wu, C.J. & Ashwell, J.D. NEMO recognition of ubiquitinated Bcl10 is required for T cell receptor-mediated NF-κB activation. Proc. Natl. Acad. Sci. USA 105, 3023–3028 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Shambharkar, P.B. et al. Phosphorylation and ubiquitination of the IκB kinase complex by two distinct signaling pathways. EMBO J. 26, 1794–1805 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Kawadler, H., Gantz, M.A., Riley, J.L. & Yang, X. The paracaspase MALT1 controls caspase-8 activation during lymphocyte proliferation. Mol. Cell 31, 415–421 (2008). The paracaspase domain of MALT1 (of the CBM complex) induces caspase-8 activation through a direct interaction. Implication of c-FLIP/caspase-8 association in TCR-mediated NF-κB activation.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Liu, Y.C. The E3 ubiquitin ligase Itch in T cell activation, differentiation, and tolerance. Semin. Immunol. 19, 197–205 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Meylan, E. et al. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-κB activation. Nat. Immunol. 5, 503–507 (2004).

    CAS  PubMed  Google Scholar 

  132. Cusson-Hermance, N., Khurana, S., Lee, T.H., Fitzgerald, K.A. & Kelliher, M.A. Rip1 mediates the Trif-dependent toll-like receptor 3- and 4-induced NF-κB activation but does not contribute to interferon regulatory factor 3 activation. J. Biol. Chem. 280, 36560–36566 (2005).

    CAS  PubMed  Google Scholar 

  133. Yamamoto, M. et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301, 640–643 (2003).

    CAS  PubMed  Google Scholar 

  134. Sato, S. et al. Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-κB and IFN-regulatory factor-3, in the Toll-like receptor signaling. J. Immunol. 171, 4304–4310 (2003).

    CAS  PubMed  Google Scholar 

  135. Yoshida, R. et al. TNF receptor-associated factor (TRAF) 6 and MEK kinase (MEKK) 1 play a pivotal role in the retinoic-acid-inducible gene-I (RIG-I)-like helicase antiviral pathway. J. Biol. Chem. 283, 36211–36220 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Maelfait, J. et al. Stimulation of Toll-like receptor 3 and 4 induces interleukin-1β maturation by caspase-8. J. Exp. Med. 205, 1967–1973 (2008). Suggests a new role for caspase-8 in the production of biologically active IL-1β in response to TLR3 and TLR4 stimulation.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Kaiser, W.J. & Offermann, M.K. Apoptosis induced by the toll-like receptor adaptor TRIF is dependent on its receptor interacting protein homotypic interaction motif. J. Immunol. 174, 4942–4952 (2005).

    CAS  PubMed  Google Scholar 

  138. Sun, H. et al. TIPE2, a negative regulator of innate and adaptive immunity that maintains immune homeostasis. Cell 133, 415–426 (2008). Identifies TIPE2 as an important negative regulator of caspase-8–mediated proinflammatory activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Pietras, E.M. & Cheng, G. A new TRADDition in intracellular antiviral signaling. Sci. Signal. 1, pe36 (2008).

    PubMed  Google Scholar 

  140. Oganesyan, G. et al. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 439, 208–211 (2006).

    CAS  PubMed  Google Scholar 

  141. Saha, S.K. et al. Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif. EMBO J. 25, 3257–3263 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vishva Dixit or Avi Ashkenazi.

Ethics declarations

Competing interests

V.D., N.S.W. and A.A. are employees of Genentech, Inc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, N., Dixit, V. & Ashkenazi, A. Death receptor signal transducers: nodes of coordination in immune signaling networks. Nat Immunol 10, 348–355 (2009). https://doi.org/10.1038/ni.1714

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1714

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing